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The aim of this paper is to compute upper and lower bounds for convex value functions of derivative contracts.
Laprise et al. (2006) compute bounds for American-style vanilla options by selected portfolios of call options.We
provide an alternative interpretation of their numerical procedure as a stochastic dynamic program forwhich the
Bellman value function is approximated by selected piecewise linear interpolations at each decision date. The
stochastic dynamic program does not (directly) depend on portfolios of call options, but rather on a key ingredi-
ent: some transition parameters of the underlying asset. More in line with the literature on dynamic program-
ming, our procedure is contract free and is well designed to accommodate all one-dimensional convex value
functions of derivative contracts. In support of this, we revisit the numerical investigation of Laprise et al.
(2006) and enlarge their findings to include options embedded in bonds under affine term-structure models
of interest rates.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Models for financial derivatives are useful for practitioners since
they provide fair values and sensitivities that may be used as guides
for trading. Several derivative contracts cannot be valued in a closed
form and have to be approximated in some way. Examples include op-
tionswith early exercise opportunities. Several valuing procedures have
been proposed in the literature. They assume a discretization of the
state space and build on the property that the approximate value con-
verges to the true value for finer and finer discretizations. In general,
for a given discretization, the approximation error is unknown, which
is a major disadvantage from a practical point of view. Enveloping the
value function to be computed allows one to provide an upper bound
for the approximation error.

Laprise et al. (2006) compute upper and lower bounds for American-
style vanilla options using selected portfolios of call options in multipli-
cative models. Instead of building on portfolios of call options to value
derivatives, we design an equivalent procedure, based on stochastic
dynamic programming (SDP), for which the Bellman value function is
approximated by selected piecewise linear interpolations at each deci-
sion date. Our construction has four main advantages with respect to
(Laprise et al., 2006):

1. SDP belongs to a well-known family of numerical procedures,
while Laprise et al. (2006) is an ad-hoc procedure. Thus, in using

SDP, one benefits from the accumulated knowledge in the field of
dynamic programming. See for example Bertsekas (1995).

2. SDP separates the evaluation problem into two parts: the dynam-
ics of the underlying asset, captured by some transition parame-
ters, and the form of the derivative to be priced, captured by a
convex function, while Laprise et al. (2006) mix between the two
parts.

3. SDP accommodates all convex value functions of derivative con-
tracts, while Laprise et al. (2006) consider only on vanilla options
under the geometric Brownian motion.

4. SDP can be extended for pricing convex derivatives in high-
dimensional state spaces, while the algorithm of Laprise et al.
(2006), as it is designed, cannot.

An extensive literature on approximation methods for valuing de-
rivatives is readily available. Commonly used methods are based on:

1. Quasi-analytic approaches (Barone-Adesi and Whaley, 1987;
Bunch and Johnson, 1992; Carr, 1998; Carr et al., 1992; Geske
and Johnson, 1984; Huang et al., 1996; Ju, 1998; Ju and Zhong,
1999; MacMillan, 1986);

2. Trees (Breen, 1991; Cox et al., 1979; Komrad and Ritchken, 1991;
Rendleman and Bartter, 1979);

3. Finite-differences (Brennan and Schwartz, 1977, 1978; Courtadon,
1982; Hull and White, 1990; Parkinson, 1977);

4. Finite-elements (Barone-Adesi et al., 2003; de Frutos, 2005, 2006);
5. Finite volumes(Zvan et al., 2001);
6. Stochastic dynamic programming (Ben-Ameur et al., 2006; Chen,

1970);
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7. Monte Carlo simulation (Boyle et al., 1997; Broadie and Glasserman,
1997).

The sandwich algorithms of Burkard et al. (1992) and Rote (1992)
for convex functions based on secants and tangents cannot be applied
directly in our context as they assume that the exact function values
and their exact derivatives are known. However, we use the same con-
cepts to envelop convex value functions of derivative contracts. Two ap-
proaches are used in the literature to derive upper and lower bounds for
value functions of derivative contracts. In the first, closed-form enve-
lopes are analytically derived (Broadie and Detemple, 1996; Davis et
al., 2001; El Karoui et al., 1998; Johnson, 1983; Lévy, 1985). In the sec-
ond, upper and lower bounds are computed bymeans of numerical pro-
cedures (Broadie and Cao, 2008; Broadie and Glasserman, 1997; Chung
and Chang, 2007; Chung et al., 2010; Haugh and Kogan, 2004; Laprise et
al., 2006; Magdon-Ismail, 2003).

The rest of the paper is organized as follows. In Section 2, we pres-
ent our stochastic dynamic program and show how to obtain upper
and lower bounds for convex value functions of derivative contracts.
In Section 3, we provide a numerical investigation. Section 4 is a
conclusion.

2. SDP formulation

2.1. Model and notation

Let {X} be the price process of an underlying asset, interpreted
here as the state process. Examples include stocks and interest
rates. An American-style option is defined by a known payoff function
φ(t, x)≥0 under exercise, where t∈{t0=0b t1b…b tN=T} lies in a fi-
nite set of decision dates and x=Xt is the level of the state variable at
time t. We consider herein convex value functions on x. For example,
φ(t, x)=max (0, K−x), for an American put option, where K is the
option strike price. The payoff function φ(t, x) is called the exercise
value and indicated in the following by ve(t, x). A European option
is a particular American-style option with a unique decision date at
the option maturity date tN=T, that is, ve(tn, x)=0, for nbN.

The option value function at tn is defined by

v tn; xð Þ ¼ max ve tn; xð Þ; vh tn; xð Þ
� �

; for all x: ð1Þ

where vh(tn, x) is the holding value, which depends on the future po-
tentialities of the contract. No-arbitrage pricing gives:

vh tn; xð Þ ¼ E ρnv tnþ1;Xtnþ1

� �
Xtn

¼ x
��� i

; for all x;
h

ð2Þ

with the convention that vh(tN, x)=0, for all x. Here, and in the se-
quel, ρn is the (possibly stochastic) risk-free discount factor for the

time period Δtn= tn+1− tn and E ⋅ Xtn
¼ x

��� ih
the conditional expecta-

tion symbol with respect to the risk-neutral probability measure.
Eqs. (1) and (2) say that the option holder must decide, in an optimal
way, whether or not to exercise its right at each decision date and
level of the state variable. The option value function at maturity is

v tN ; xð Þ ¼ ve tN ; xð Þ; for all x: ð3Þ

American-style options cannot be evaluated in closed form, except
for very few particular cases. Their values have to be approximated in
some way. We propose herein upper and lower bounds, and obtain

v̂ t0; x0ð Þ ¼ v̂sup t0; x0ð Þ þ v̂inf t0; x0ð Þ
2

: ð4Þ

These bounds verify

v̂ inf t; xð Þ≤ v t; xð Þ≤ v̂ sup t; xð Þ; for all t and x;

which results in an approximation error e (t, x) that verifies

0≤ e t; xð Þ≤ v̂ sup t; xð Þ−v̂ inf t; xð Þ; for all t and x: ð5Þ

Our approach provides not only an approximation for the option
value (Eq. (4)) but also an upper bound for the approximation error
(Eq. (5)).

Let G={a1,…, ap} be a mesh of grid points that covers the state
space. We select the grid points to be the quantiles of the underlying
asset at tN=T. For example, in the Black and Scholes' model, the grid
points are constructed as follows:

a0 ¼ 0; a1 ¼ x0e
r−σ2

2

� �
T−7σ

ffiffi
T

p
; a2 ¼ x0e

r−σ2
2

� �
T−5σ

ffiffi
T

p
;

ap−1 ¼ x0e
r−σ2

2

� �
Tþ5σ

ffiffi
T

p
; ap ¼ x0e

r−σ2
2

� �
Tþ7σ

ffiffi
T

p
; apþ1 ¼ ∞;

and

ai ¼ x0e
r−σ2

2ð ÞTþσ
ffiffi
T

p
zi ; ð6Þ

where zi is the quantile of the standard normal distribution associated
with fraction i/p, for i=3,…, p−2. This construction, although not
unique, has the property to set more evaluation nodes in the most
visited areas (Eq. (6)). The grid points are kept fixed over time.

2.2. The upper envelope

Suppose that a convex upper envelope approximation ṽhsup tnþ1; :ð Þ
of vh(tn+1,.) is available at a certain future date tn+1. One has

ṽ h
sup tnþ1; x

� �
≥vh tnþ1; x

� �
; for all x:

This assumption is not really a limitation since

ṽ h
sup tN ; xð Þ ¼ vh tN ; xð Þ ¼ 0; for all x:

That is to say that SDP starts at tN=T, where

ṽ sup tN ; xð Þ ¼ v tN ; xð Þ ¼ ve tN ; xð Þ; forallx: ð7Þ

Eqs. (3) and (7) say that the SDP approximation ṽ sup TN ; :ð Þ at ma-
turity is nothing else than the true value function of the derivative to
be evaluated. Now, we show how SDP moves backward in time from
time tn+1 to time tn.

First, we construct ṽsup tnþ1; xð Þ as follows:

ṽ sup tnþ1; x
� � ¼ max ve tnþ1; x

� �
; ṽhsup tnþ1; x

� �� �
; for all x: ð8Þ

The value function in Eq. (8) is convex and over approximate
v(tn+1, x), since the maximum of two convex functions is convex.

Then, we compute ṽsup tnþ1; akð Þ, for all ak in G, so that we can store
the required information in a computer. Next, we use a piecewise lin-
ear interpolation, and extend ṽsup tnþ1; :ð Þ from G to the overall state
space ℝ+ as follows:

v̂sup tnþ1; x
� � ¼ Xp

i¼0

αnþ1
i þ βnþ1

i Xtnþ1

� �
R ai ≤ x b aiþ1
� �

; for all x; ð9Þ
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