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I consider a bivariate stationary fractional cointegration system and I propose a quasi-maximum likelihood
estimator based on the Whittle analysis of the joint spectral density of the regressor and errors. This allows
to estimate jointly all parameters of interest of the model. I lead a Monte Carlo experiment to investigate
the finite sample properties of this estimator when integration orders are less than 1/2. However, it is not
so easy for practitioners to identify whether or not the observed time series are stationary. This issue is inves-
tigated by extending the numerical analysis to mean-reverting non-stationary region of the parameter space,
although the proposed estimator is not theoretically designed to handle this case. The results display good
finite sample properties in both cases, stationary and non-stationary. Thereby, it reveals that making a
wrong decision on the stationarity of raw series does not lead to an erroneous conclusion. An application
to the stock market synchronization is proposed to illustrate the empirical relevance of this estimator.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following triangular bivariate fractional cointegration
representation

1−Lð Þγ yt−βxtð Þ ¼ ε1t ; 1−Lð Þδxt ¼ ε2t ; t ¼ 1;2;…;n; ð1Þ

where δ ∈ (0,1/2), γ ∈ [0,1/2) and (1−L)α is the fractional filter,
further denoted Δα and defined by its binomial expansion

1−Lð Þα ¼
Xþ∞

k¼0

ak αð ÞLk; ak αð Þ ¼ Γ k−αð Þ
Γ kþ 1ð ÞΓ −αð Þ ð2Þ

Γ zð Þ ¼ ∫þ∞
0 tz−1e−tdt; ð3Þ

where L is the lag operator. Following the general and seminal defini-
tion of the cointegration proffered by Granger (1986), in Eq. (1), yt is
said cointegrated if the error term νt=yt−βxt, satisfies νt∼ I(γ) with
γbδ and xt∼ I(δ). When γ≥δ, the regression is spurious, whether yt
and xt are stationary or not, as long as their orders of integration sum
up to a value greater than 1/2 (see Tsay and Chung, 2000).Many studies
restrict their analysis to integer integration orders. In most cases, xt is

assumed to possess a unit root (i.e. δ=1) and the traditional
cointegration also imposes γ=0. When δ is assumed equal to unity
and vt~ I(γ), 0≤γb1, the estimation of Eq. (1) usually proceeds in two
steps (see the pioneer work of Cheung and Lai, 1993). The first step is
to estimate the long run coefficient β, and the second step is to estimate
γ, the long memory parameter of the residuals.

More recently, the idea that cointegration relationship can exist
between stationary variables (i.e. δb1/2) has emerged. Some studies
have suggested adapted estimators for β. For instance, Robinson
(1994) develops a consistent semi-parametric narrow-band least
squares estimator (NBLS) of β that essentially performs the time
domain least square estimator (LSE) on a degenerating band of fre-
quencies around the origin. Then, Christensen and Nielsen (2006)
demonstrate the asymptotic normality of the NBLS when δ+γb1/2
and Nielsen and Frederiksen (2011) extend it to the weak fractional
cointegration1 (i.e. δ–γb1/2). In most studies, these estimators are
combined with semi-parametric estimators of long memory (see
for instance Christensen and Nielsen, 2006; Marinucci and
Robinson, 2001; Nielsen and Frederiksen, 2011). Among others, we
can mention the well-known log-periodogram regression (LPE) of
Geweke and Porter-Hudak (1983), Künsch (1987), Robinson
(1995) or Andrews and Guggenberger (2003). Velasco (2003) sug-
gests to estimate simultaneously δ and γ but requires a consistent es-
timator of β. Earlier, a similar proposition was made by Sowell
(1989) to estimate jointly β, δ and γ in the time domain, and applied

Economic Modelling 34 (2013) 98–105

☆ I would like to thank two anonymous referees for their careful reading of the paper
and their very helpful suggestions. I also express my thanks to the International Sym-
posium in Computational Economics and Finance 2012 conference.
⁎ Aix-Marseille School of Economics, GREQAM, Château La Farge, Route des Milles

13290 Aix-en-Provence, France. Tel.: +33 4 42 93 59 60; fax: +33 4 42 38 95 85.
E-mail address: gilles.de-truchis@univ-amu.fr.

1 The terms weak and strong fractional cointegration mean here the intensity with
which deviations from the long-run equilibrium will disappear.

0264-9993/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.econmod.2012.12.011

Contents lists available at ScienceDirect

Economic Modelling

j ourna l homepage: www.e lsev ie r .com/ locate /ecmod

http://dx.doi.org/10.1016/j.econmod.2012.12.011
mailto:gilles.de-truchis@univ-amu.fr
http://dx.doi.org/10.1016/j.econmod.2012.12.011
http://www.sciencedirect.com/science/journal/02649993
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econmod.2012.12.011&domain=pdf


by Dueker and Startz (1998). Nielsen (2007) extended this innovative
approach to the frequency domain by suggesting a local Whittle
quasi-maximum likelihood analysis of the joint spectral density of xt
and vt (hereafter locale QMLE). Simultaneously, Hualde and Robinson
(2007) developed a

ffiffiffi
n

p
-consistent parametric estimator ofweak fraction-

al cointegration following the suggestion of Robinson and Hualde (2003)
and exploiting an error correction form of (1). Their estimator has the
advantage of covering a wide range of integration orders; however, it
requires a more complex optimization procedure than Nielsen (2007).

In this paper, I propose a full-band Whittle analysis of a stationary
fractional cointegration model (hereafter FC-QMLE). This approach
contrasts with that of Nielsen (2007) because of the spectral density
function that embeds the parametric form the short-and long-term dy-
namics, although the two likelihood functions are very similar. The two
methods have their advantages and disadvantages. For instance, as
mentioned in Nielsen (2007), a fully parametric approach is more effi-
cient, using the entire sample, but is inconsistent if the parametric
model is misspecified while a semi-parametric approach is invariant
to any short-term dynamics but at the cost of higher variance. Indeed,
the local FC-QMLE is only

ffiffiffiffiffi
m

p
-consistent where m depends on the

bandwidth selection.2 A Monte Carlo experiment documents the finite
sample properties of the FC-QMLE. A first part of the simulation is con-
sistentwith themodel (1) and the parameter space of δ andγ, while the
second is not. Indeed, in practice, it is difficult to knowwhether or not the
integration order of the time series is less than 1/2 and a wrong decision
concerning the stationarity of the series can lead tomisuse the estimator.
To investigate this issue, one part of theMonte Carlo experiment consists
of estimating a mean-reverting non-stationary model (i.e. δb1), al-
though the FC-QMLE is not designed to handle this case. In both cases,
the finite sample properties are good. The main result of this numerical
analysis lies that a wrong decision on the stationarity of raw series does
not lead to an erroneous conclusion concerning the existence of a long
run relationship. Some insights are put forward regarding this result.

The remainder of the paper is laid out as follows. In Section 2 some
generalities on the long memory are exposed and the FC-QMLE is de-
veloped. In Section 3 the Monte Carlo simulation is described and
performed. In Section 4, an application on the stock market synchro-
nization is proposed to illustrate the empirical relevance of the
FC-QMLE. Section 5 concludes the paper.

2. The stationary fractional cointegration model

In this section, themodel is developedwith respect to the stationary
regions of long memory parameters (i.e. δ and γ less than 1/2). The
development below first introduces the Whittle estimator outside the
cointegration context. Later, I take into account the cointegration frame-
work by considering a multivariate framework.

2.1. The univariate Whittle estimator of fractional integration

In a more general form than the Eq. (2), the Gaussian process xt
(equivalently vt, also assumed to beGaussian) can be restated as follows

xt ¼
X∞
j¼0

κ j; δð Þε1t−j;
X∞
j¼0

κ j; δð Þ2b∞; κ 0; δð Þ ¼ 1; t∈Z ð4Þ

for κ :; δð Þ∈R. In order to state the spectral density of xt, let g(λ;δ)=
∑j=0

∞ κ(j;δ)eijλ be the transfer function. Accordingly, the spectral den-
sity of xt is defined by,

f x λ; δð Þ ¼ σ2

2π
g λ; δð Þ 2

; σ2 ¼ var ε2tð Þ;
������ ð5Þ

where |g(.)| is the complex modulus of g(.). Assuming that σ2 depends
on δ, thewell-knownWhittle estimator (QMLE) of δ is therefore defined
as δ̂n ¼ argminδ∈D Qn δð Þ with D a compact subset of R and

Qn δð Þ ¼ −n ∫π
−π logf x λj; δ

� �
dλþ ∫π

−πf x λj; δ
� �−1

Ixx λj

� �
dλ

� �
; ð6Þ

where∫−π
π logfx(λj;δ)dλb∞ is assumed, implying that xt is non-deterministic.

In Eq. (6), Ixx(λj) denotes the periodogram of xt defined as

Ixx λj

� �
¼ wx λj

� �
wx λj

� �
; wx λj

� �
¼ 1

2πn

Xn
t¼1

xte
itλj ; ð7Þ

wherewx(λj) is the Fourier transform of xt and λj=(2πj/n) is the angu-
lar frequency. In the following, it will be preferred the discrete version
of (6) which is

Qn δð Þ ¼ −
Xn
j¼1

log fx λj; δ
� �

þ f x λj; δ
� �−1

Ixx λj

� �� �
ð8Þ

Notice that in Qn(δ) the zero frequency is left out of the summa-
tion, implying that this estimator is invariant to the presence of non-
zero mean. Minimize Qn approximates the normal log-likelihood up
to a constant-order term. Moreover, under some regularity condi-
tions, it is conjectured that δ̂ is asymptotically efficient in the Fisher
sense and asymptotically normally distributed (see Fox and Taqqu,
1986).

2.2. The multivariate Whittle estimator of fractional cointegration

One can attempt to estimate step by step the Eq. (1) using a con-
sistent estimator of β. However, it should be more efficient to esti-
mate jointly β, δ and γ. This alternative is widely discussed in
Robinson and Hualde (2003) and applied in the time domain and
the frequency domain by Hualde and Robinson (2007) and Nielsen
(2007), respectively. In this subsection, the model has no short-
term dynamics (see Subsection 2.3 for a version with short-term dy-
namics). Thereby, the likelihood function I consider is closely related
to the likelihood function of the local FC-QMLE. However, in contrast
to the narrow band approach of Nielsen (2007), I consider the whole
sample. A similar development is conducted by Hosoya (1997),
concerningthe Whittle estimator of multivariate ARFIMA processes
(multivariate QMLE) but does not deal with the cointegration
framework.

Let wt be a bivariate Gaussian sequence such as wt=(νt, xt)′, θ1=
(γ, δ)′ and θ2=(β). Rewriting Eq. (4) in a multivariate framework, we
obtain

wt ¼
X∞
j¼0

K j; θ1ð Þεt−j;
X∞
j¼0

trK j; θ1ð ÞΣ ςð ÞK j; θ1ð Þ′<∞; K 0; δð Þ ¼ I; t∈Z

ð9Þ

where elements of K are all real, εt=(ε1t,ε2t) and Σ is a real, symmet-
ric and positive definite 2×2 matrix whose elements are ς=(Σ11,
Σ12, Σ22)′. It follows the transfer matrix G(λ;θ1)=∑ j=0

∞ K(j;θ1)eijλ

and the joint spectral density function

fw λ; θ1;ςð Þ ¼ 1
2π

G λ; θ1ð Þ−1Σ ςð Þ G λ; θ1ð Þ−1
� ��

; ð10Þ

2 For practical purpose, the bandwidth selection is important because of the variance
of the estimator that can increase. For instance, a too high bandwidth can deteriorate
the variance if the process possesses a short run dynamics because of the confusion
in the frequency domain between the low and high frequencies.

99G. de Truchis / Economic Modelling 34 (2013) 98–105



Download English Version:

https://daneshyari.com/en/article/5054220

Download Persian Version:

https://daneshyari.com/article/5054220

Daneshyari.com

https://daneshyari.com/en/article/5054220
https://daneshyari.com/article/5054220
https://daneshyari.com

