
Parameter identification for fractional Ornstein–Uhlenbeck processes
based on discrete observation

Pu Zhang a, Wei-lin Xiao b, Xi-li Zhang b, Pan-qiang Niu c,d,⁎
a Department of Finance, School of Economics and Management, Changzhou University, Changzhou 213164, China
b Department of Accounting and Finance, School of Management, Zhejiang University, Hangzhou 310058, China
c School of Film and Television Art & Technology, Shanghai University, Shanghai 200444, China
d School of Media & Design, Shanghai Jiao Tong University, Shanghai 200240, China

a b s t r a c ta r t i c l e i n f o

Article history:
Accepted 2 September 2013
Available online xxxx

Keywords:
Fractional Ornstein–Uhlenbeck processes
Quadratic variation
Maximum likelihood estimation
Donsker type approximation
Consistent estimator

Fractional Ornstein–Uhlenbeck process is an extendedmodel of the traditional Ornstein–Uhlenbeck process that
provides some useful models for many physical and financial phenomena demonstrating long-range dependen-
cies. Obviously, if some phenomenon can be modeled by fractional Ornstein–Uhlenbeck processes, the problem
of estimating unknown parameters in these models is of great interest, especially, in discrete time. This paper
deals with the problem of estimating the unknown parameters in fractional Ornstein–Uhlenbeck processes.
The estimation procedure is built upon the marriage of the quadratic variation method and the maximum likeli-
hood approach. The consistency of these estimators is also provided. Simulation outcomes illustrate that our
methodology is efficient and reliable.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Ornstein–Uhlenbeck process, which is also called the Vasicek
model, is being extensively used in finance these days as a one-factor
short-term interest rate model. Moreover, this process has found
many applications infields as diverse as economics andfinance, biology,
physics, chemistry, medicine and environmental studies. However, all
models involve unknown parameters or functions, which need to be es-
timated from observations of the process. The estimation of these pro-
cesses is therefore a crucial step in all applications, in particular in
applied finance. In the case of Ornstein–Uhlenbeck processes driven
by Wiener processes, the statistical inference for these processes has
been studied earlier and a comprehensive survey of various methods
was given in Prakasa Rao (1999) and Bishwal (2008). Thanks to the
Markovian and Gaussian properties ofWiener processes, both themax-
imum likelihood estimator (MLE) and the least squares estimator (LSE)
are easy to obtain and exhibit asymptotic unbiasedness, efficiency and
normality under the usual regularity conditions (see Bishwal, 1999,
2010). For MLE and LSE based on discrete observations, we refer to
Bishwal (2001), Bishwal and Bose (2001), Aït-Sahalia (2002) and the
references therein.

Recently, long memory processes have been used for modeling var-
ious stochastic phenomena that arises in areas such as hydrology, geo-
physics, medicine, genetics, internet traffic patterns and financial
economics. The most popular stochastic process that exhibits long-

range dependence is of course the fractional Brownian motion (fBm).
Consequently, statistical inference problems related to processes driven
by the fBm have been studied extensively by many authors (see, for in-
stance Bishwal, 2003; Bishwal, 2008; Hu and Nualart, 2010; Kleptsyna
and LeBreton, 2002; Lee and Song, 2013; Tudor andViens, 2007). An ex-
tensive review onmost of the recent developments related to the para-
metric and other inference procedures for stochastic models driven by
fBm can be found in Prakasa Rao (2010).

These papers above focused on the problem of estimating the un-
known parameters of stochastic models driven by fBm in the
continuous-time case. However, as has been stressed by various au-
thors, the continuous sampling observations hypothesis is unreason-
able since in practice it is obviously impossible to observe a process
continuously over any given interval, due, for instance, to the limita-
tions on the precision of themeasuring instrument or the unavailability
of observations at every point in time (Prakasa Rao, 1999). For example,
in practice it is usually only possible to observe these processes in
discrete-time samples (e.g., stock prices collected once a day). There-
fore, statistical inference for discretely observed diffusions was of
great interest for practical purposes and at the same time it posed a
challenging problem. Thus, the most recent research in stochastic pro-
cesses estimation has been concerned with discrete time observations,
where some progress has been made, both in parametric and nonpara-
metric estimation. Actually, in recent years, there were some attempts
to investigate the inference problems of stochastic processes associated
with fBm, when the observational scheme is discrete in nature. For in-
stance, Tudor and Viens (2007), Bishwal (2011), Xiao et al. (2012)
and Hu et al. (2012) treated estimation problem of the drift parameter
in stochastic models associated with fBm using the following idea:
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first, one constructs an estimator in the continuous time model and
then the continuous estimator is discretized. Some author (see, for ex-
ample, Bertin et al., 2011; Hu et al., 2011, Rifo et al., 2013, Sun et al.,
2013; Xiao et al., 2011; Xu et al., 2012) considered the problem of esti-
mating coefficients in somemodels driven by fBm based on an approx-
imation by a discretized stochastic differential equation. More recently,
Kaur et al. (2011) investigated the parameter estimation problem in
stochastic differential equation driven by fBm using an approximation
of the continuous-time log-likelihood function. Some authors have
studied the parameter estimation problem of the stochastic models
driven by fBm using the method of Malliavin calculus (Chronopoulou
and Tindel, 2013) and the approach of generalized moment-matching
(Papavasiliou and Ladroue, 2011).

Since fBm is not a Markov process, the Kalman filter method cannot
be applied to estimate the parameters of stochastic processes driven by
fBm. Consequently, it is a convenient way to handle the estimation
problem by replacing fBm with its associated disturbed random walk.
This method, using a randomwalk approximation of the fBm, was orig-
inally introduced by Sottinen (2001). Moreover, this Donsker type ap-
proximation approach was further extended by Bertin et al. (2011),
who estimated parameters in stochastic processes of the Gaussian
case (fBmwith drift) and the non-Gaussian case (the Rosenblatt process
with drift). In this paper, we shall consider the parameter estimation
problem for a special fractional process, namely fractional Ornstein–
Uhlenbeck process (FOUP). Themain contribution of this paper is to de-
termine the estimators for the FOUP and to show the strong consistence
of these estimators. For these purposes,wefirst construct the estimators
for FOUP, which is observed at discrete points of time. Then we present
the asymptotic behavior of these estimators. Finally,we describe thenu-
merical implementationbased on ourmethod andoffer somenumerical
results to test the accuracy and validity of our proposal.

Our paper is organized as follows. In Section 2 we propose estima-
tors for FOUP from discrete observations. The almost sure convergence
of these estimators is also provided in the latter part of this
section. Section 3 provides Monte-Carlo experiments to test the perfor-
mance of the estimators under different sampling conditions. Finally,
Section 4 includes conclusions and directions of further work.

2. Estimation procedure

The Ornstein–Uhlenbeck process was proposed by Uhlenbeck and
Ornstein in a physical modeling context, as an alternative process to
Brownian motion. Since the original paper appeared, the model has
been used in a wide variety of application areas. In finance, it is best
known in connection with the Vasicek interest rate model. However,
it is well-known that many time series, in diverse fields of application,
may exhibit the phenomenon of long-memory. The most popular sto-
chastic process with long-memory property is of course the fBm. Actu-
ally, a crucial problem with the applications of stochastic processes
driven by fBm in practice is how to obtain the unknown parameters in
these stochastic models. Consequently, the topic of parameter estima-
tion for stochastic differential equations driven by fBm has been widely
studied. In the following, we will deal with the problem of estimating
the unknown parameters in the FOUP.

2.1. Model specification

Now, let Ω; F ; F t≥0;Pð Þ be a stochastic basis satisfying the usual
conditions. The natural filtration of a process is understood as the P-
completion of the filtration generated by this process. In this paper,
we consider the estimation problem of the following stochastic differ-
ential equation from discrete observations

dXt ¼ −θXtdt þ σdBH
t ; t≥0; ð1Þ

where the drift parameter θ is strictly positive, σ is a constant and Bt
H is a

fBm with Hurst parameter H N 1/2 on some probability space Ω; F ;Pð Þ
with a filtration {F}t ≥ 0.

It is worth emphasizing that the solution of Eq. (1) is given by

Xt ¼ X0−θ
Z t

0
Xsdsþ σBH

t ; t≥0 :

Here the unknown parameter ϑ = (θ, σ,H) belongs to an open sub-
set Θ of 0;þ∞ð Þ � 0;þ∞ð Þ � 1

2 ;1
� �

. The FOUP is useful since it presents
the long-range dependence and it produces a burstiness in the sample
path behavior. The present work exposes an estimation procedure for
estimating all three components of ϑ given the regular discretization
of the sample path. Now, we use the following step. Let {Xt;t R} be
the FOUP with HN 1

2 and suppose that the data Xt is recorded discretely
at points (h,2h,⋯,Nh) in the time interval [0,T], where h ¼ T

N is the step
size of the partition and T is the time span of the data. For simplicity,
we assume that T = 1. Thus, the full sequence of N observations is
Xh;X2h; ⋯;XNhf g ¼ X 1

N
;X 2

N
; ⋯;XN

N

n o
.

2.2. The estimation procedure

Based on the above situation of discrete observations, we now pro-
ceed to estimate unknown parameters of H, σ and θ based on quadratic
variationmethod andmaximum likelihood approach. First, using the re-
sult of Kubilius and Melichov (2010), we can state that the estimator of
Hurst parameter in FOUP can be written as

Ĥ ¼ 1
2
− 1

2 ln2
ln

XN−1
i¼1

X iþ1ð Þh−Xih

h i2
XN

2−1
i¼1

X2 iþ1ð Þh−X2ih

h i2 ; ð2Þ

where ⌊z⌋ denotes the greatest integer not exceeding z.
Then, from Eq. (1), it is clear that the diffusion parameter σ2 can be

(at least theoretically) computed on any finite time interval. Thus, we
can obtain an estimator for the diffusion parameter by using the qua-
dratic variation

σ̂2 ¼
XN−1

i¼1
X iþ1ð Þh−Xih

� �2
N−1ð Þh2H : ð3Þ

Hence we can estimate H and σ2 from any small interval as long as
we have a enough observation of the process. Finally, we are in a posi-
tion to estimate the drift parameter. We would like to mention that,
since the increments of the process Bt

H are not independent anymore
and the process Bt

H is not a semimartingale, the martingale type tech-
niques cannot be used to study this estimator. This problem will be
avoided by the use of the random walks that approximate Bt

H.
We will make use of the following representation (see, for instance,

Sottinen, 2001).

Lemma 2.1. The fBmwith Hurst parameter H N 1/2 can be represented by
its associated disturbed random walk

BH;N
t ¼

XNt
i¼1

ffiffiffiffi
N

p Z i
N

i−1
N

KH Nt
N

; s
� �

ds

 !
εi ð4Þ

with

KH t; sð Þ ¼ cH H−1
2

� �
s

1
2−H
Z t

s
u−sð ÞH−3

2uH−1
2du ð5Þ

where cH is the normalizing constant

cH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2HΓ 3
2−Hð Þ

Γ H þ 1
2ð ÞΓ 2−2Hð Þ

s
; ð6Þ
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