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This paper examines the dynamics of volatility transmission between EU emission allowances (EUA) and oilmar-
kets using a range-based volatility measure. We propose a multivariate conditional autoregressive range model
with bivariate lognormal distribution to capture volatility dynamics and volatility spillovers between oil and EUA
markets. Our findings for Phase II of the European Union Emissions Trading Scheme point to the existence of vol-
atility dynamics and leverage effects and to no significant volatility spillovers between these markets. These re-
sults remained robust to other volatility measures and model specifications.
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1. Introduction

This article examines the dynamics of volatility transmission be-
tween the European Union allowances (EUA) market and the oil mar-
ket. Exploring the extent to which volatility shocks in oil markets are
transmitted to carbonmarkets or vice versa is of great importance to in-
vestors, policy makers and researchers. The joint behaviour of volatility
is paramount for the construction of portfolios and for asset pricing –

particularly for derivatives – and is also essential for risk management,
as it determines the benefits of diversification, the optimal hedge ratio
against risk and the value-at-risk measure. In addition, EUA volatility
and volatility transmission between the EUA and oil markets are of in-
terest to regulators, given that the impact on prices of carbon emission
control policies is linked to EUA volatility (see, e.g., Daskalakis and
Markellos, 2009) and the factors affecting that volatility, in particular,
oil price volatility. Likewise, consideration of volatility transmission is
essential to making efficient econometric inferences and accurate fore-
casts of volatility in both markets.

Oil prices have traditionally beenmore volatile than the price of other
tradable commodities; furthermore, their volatility has been found to
have negative effects on investment (Elder and Serletis, 2010), growth

(Ferderer, 1996), stock market returns and returns volatility (see,
e.g., Arouri et al., 2011; Reboredo, 2010; Reboredo and Rivera-
Castro, 2013; Sadorsky, 1999; Vo, 2011). Although oil and EUA mar-
kets are linked at the theoretical and empirical level (see Kanen,
2006; Reboredo, 2013; Redmond and Convery, 2006), and although
EUA have become a tradable asset – negotiated in organized finan-
cial markets that have steadily increased in liquidity and trading vol-
ume since the European Union emission trading scheme (EU ETS)
was implemented – no study has as yet explored the extent to
which oil price shocks are transmitted to current and future volatil-
ity in carbon markets or vice versa.1

Previous studies have examined the transmission of volatility infinan-
cial markets from different perspectives. Using return-based volatility
measures, Engle et al. (1990), King and Wadhwani (1990), Cheung and
Ng (1996) and Hong (2001) developed tests for volatility spillover effects
in a range of stock and exchange rate markets. For the oil market, Arouri
et al. (2011) and Vo (2011) studied volatility transmission between oil
and stock markets using the multivariate generalized autoregressive
conditional heteroskedasticity (GARCH) and stochastic volatility models,
respectively. From a different perspective, Diebold and Yilmaz (2009)
measured the magnitude of return and volatility spillovers through
variance decomposition of forecasted error variances in a vector
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1 Volatility spillovers in the EU ETS between spot and future prices have been analysed
by Joyeux andMilunovich (2010) and Rittler (2012). Volatility instability of carbon prices
has been studied by Chevallier (2011).
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autoregressive model. Given that, compared to other volatility
measures, the return-based volatility measure suffers from infor-
mational inefficiency; another strand of the literature has focused
on volatility transmission by considering realized volatility or
range-based volatility. Bubák et al. (2011), for example, analysed
volatility transmission in emerging European foreign exchange
markets using realized volatility and a dynamic version of the
Diebold–Yilmaz approach. Diebold and Yilmaz (2012) studied vol-
atility spillovers across US asset markets using range-based volatil-
ity estimates and an improved version of the volatility spillover
index developed in Diebold and Yilmaz (2009). Chiang and Wang
(2011) studied volatility contagion in financial markets due to the
subprime crisis using the volatility-range measure and a smooth transi-
tion copula function.

In this paper, we adopt the volatility-range measure since it has bet-
ter properties than the return-based volatility estimate in terms ofmea-
surement errors (Parkinson, 1980), efficiency and robustness tomarket
microstructure noise (Alizadeh et al., 2002) and in-sample and out-of-
sample volatility forecasts (Brandt and Jones, 2006). Also, Christensen
and Podolskij (2007) and Martens and van Dijk (2007) showed that
the range-based estimate of integrated volatility is more precise and
robust to market microstructure noise than the return-based estimate.
We examine volatility spillovers between the EUA and oil markets by
extending the conditional autoregressive rangemodel (CARR) proposed
by Chou (2005) to amultivariate time series specification. Themultivar-
iate CARR (MCARR) model provides the conditional volatility dynamics
for EUA and oil price series as well as the conditional cross-effects
between them.We also considered leverage effects and different condi-
tional correlation specifications so as to take into account volatility
interdependence. Within the MCARR model we formally tested for:
(1) volatility spillovers, by running a simple coefficient test similar to
\kern-2pt\lower2ptthe Granger causality test, and (2) conditional con-
temporaneous dependence and time-varying dependence using the
likelihood ratio test. This approach is fundamentally different from the
one adopted by Chiang and Wang (2011), who considered the CARR
model to study volatility contagion using a smooth transition copula
that captures interdependence but which is not capable of capturing
volatility spillovers.

Our empirical study of volatility transmission was conducted from
the onset of Phase II of the EU ETS in 2008, since this phase is featured
by a more stable relationship between the EUA price and its determi-
nants (Bredin andMuckley, 2011) and by a significant rise in market li-
quidity in EUA future markets (Benz and Hengelbrock, 2008; Bredin
et al., 2009). By analysing weekly data for EUA future contracts and
crude oil price volatilities, our study makes two major contributions to
the empirical literature on modelling oil and carbon emission linkages.
Firstly, as far as we are aware, ours is the first study to investigate EUA
and crude oil market volatility spillovers and interdependence and pro-
vides empirical evidence of no spillover effects and volatility indepen-
dence. Oil price volatility, therefore, plays no role in explaining the
time dynamics in the conditional volatility of EUA prices and is of no
value in forecasting future EUA price volatility. Secondly, our research
contributes to the literature on spillover effects by considering the
CARR model in a multivariate context, taking into account different de-
pendence specifications for conditional dependence and asymmetric
effects.

The rest of the paper is laid out as follows: Section 2 provides a brief
overview of the EU ETS. Section 3 introduces the multivariate CARR
model developed to capture volatility spillovers between the EUA and
oil markets. Sections 4 and 5 present data and results, respectively. Fi-
nally, Section 6 provides the conclusions of the paper.

2. The European Union Emissions Trading Scheme

The EUETSwas launched in January 2005 as amarket-based approach
to combatting greenhouse gas emissions that rewards the reduction of

carbon emissions with economic incentives. The system is organized in
three commitment phases: Phase I (2005–2007), the pilot phase;
Phase II (2008–2012), coinciding with the first Kyoto protocol com-
mitment to reduce greenhouse gas emissions by 8% below the 1990
level in the EU; and Phase III, to cover the period 2013–2020. Cur-
rently obliged to participate are four industrial sectors: energy, fer-
rous metals production and processing, the mineral industry and
other energy-intensive activities. One EUA unit grants the holder
the right to emit one metric tonne of CO2-equivalent (tCO2e) during
a specified commitment phase.

Themarket is structured as a cap-and-trade system. Participating in-
stallations are allocated a specific volume of EUA, currently determined
according to a national allowance plan (NAP) approved by the EU Com-
mission that specifies the total number of allowances assigned to a
member state and the rules for distribution among participating instal-
lations. Participating installations can either consume their stock of EUA
by emitting CO2 or reduce emissions and sell off their surplus EUA; in-
stallations that lack EUA can purchase them (privately, over the counter
or in a climate exchange). Participating installations report their emis-
sions and return the equivalent quantity of EUA to their government
on the 30th day of April each year. Installations can also use Kyoto pro-
tocol trading emission system instruments called certified emission re-
ductions (CERs), obtained for emission reduction projects, or emission
reduction units (ERUs), obtained by reducing emissions under what
are called Joint Implementation projects. Emissions not covered by
any of these systems are fined at the rate of 40 (Phase I) or 100 (Phase
II) euros/tCO2e.

Climate-exchange or over-the-counter trading is regulated bymem-
ber states and supervised by national authorities. BlueNext in Paris and
ICE Futures in London are themost liquid spot market and futures mar-
ket, respectively, accounting for around 70% and 90% of the daily turn-
over in their respective markets.

3. The multivariate conditional autoregressive range model

Parkinson (1980) showed that the range of log prices at time t, de-
fined as Rt=max{Pτ}−min{Pτ}, where τ∈ [t−1, t], is an unbiased es-
timate of price volatility (measured by the standard deviation). To
capture temporal dependence in price volatility, Chou (2005) proposed
the CARR model of lag order p and q specified as follows:

Rt ¼ λtεt; t ¼ 1;…;T; ð1Þ

λt ¼ ω þ
Xp
i¼1

αiRt−i þ
Xq
j¼1

β jλt− j ð2Þ

where λt is the conditional expected range at time t given the informa-
tion set, It−1, up to time t−1, andwhere εt is the disturbance termwith
mean one and a density f(εt;θ) defined over [0,∞) with a parameter vec-
tor θ. To ensure that λt is positive, the coefficients (ω,α1, …,αp,β1,
…,βq)′ in Eq. (2) must be nonnegative. The CARR model can be easily
extended to consider exogenous variables in Eq. (2).

Although Chou's (2005) study considered the exponential and
Weibull density functions for the disturbances, Alizadeh et al. (2002)
proved that log price ranges follow a normal distribution; meanwhile,
Brandt and Jones (2006) showed the superiority of the range-based vol-
atility model with lognormal disturbances over the return-based vola-
tility model. We thus consider the lognormal distribution for the
disturbance terms, εtjIt−1 ∼i:i:d:LN −σ2=2;σ2
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, specified as:
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