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Intraday data of 26 German stocks are used to investigate whether the information contained in trading volume
and number of trades as well as in various specifications of overnight returns can improve one-step-ahead
volatility forecasts. For this purpose, a HARmodel of the realized range adjusted for discrete trading is augmented
by each of these variables and compared with the model's default form. The results show that the considered
liquidity measures lead to very modest improvements in forecasting performance. The overnight returns
exhibit some in-sample forecasting power. However, the accuracy improvement of out-of-sample forecasts
is unequivocally non-significant.
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1. Introduction

Financial market volatility enjoys a sustained interest in theoretical
and empirical literature. Over time, the increasing availability of
transaction and quote data has allowed the focus to be set on intraday
levels. High-frequency data enable the application of advanced volatility
proxies like the realized volatility based on summing squared intraday
returns (Andersen andBollerslev, 1998) or the realized range comprising
the sumof scaled intraday price ranges (Christensen and Podolskij, 2007;
Martens and van Dijk, 2007). Among others, issues of current research
interest are, the development of advanced forecasting approaches
(Corsi, 2009; Ghysels et al., 2006), the adjustment of existing estimators
in order to deal with empirical drawbacks (Hansen and Lunde, 2006;
Zhang et al., 2005) as well as testing and accounting for the existence
of jumps (Andersen et al., 2007).

The aim of this study is to examine whether in-sample and out-
of-sample forecasting improvements can be achieved by augmenting
a heterogeneous autoregressive (HAR) model for the realized range
with common liquiditymeasures and various specifications of overnight
returns. Due to its easy application and overall very good forecasting

performance, the HAR model is broadly supported in the plethora of
modeling and forecasting approaches for financial market volatility.

This article complements the large body of literature in several
directions. First, the incremental economic value of trading volume,
number of daily transactions and overnight returns for forecasting
return volatility is analyzed for a large stock sample. The research is
motivated by the pronounced lead–lag correlations of these variables
to the daily volatility. Second, the results are sorted by the stocks'
liquidity level in order to enhance insights into possible forecast
improvements. Third, since the realized range established by Martens
and van Dijk (2007) and Christensen and Podolskij (2007) is used
instead of realized volatility, as in the original model proposed by
Corsi (2009), the study also demonstrates its eligibility for accurate
volatility modeling within a (augmented) HAR model.

The notion that liquidity measures like trading volume, number
of transactions, bid-ask spreads, or overall market liquidity are
related to the return volatility is widespread. A number of studies
address the relationship between volume and return volatility.
A popular theoretical explanation is based on the mixture of
distribution hypothesis which suggests that volatility is positively
related to trading volume due to its dependence on a common latent
mixing variable, the rate of information arrival (Park, 2010). However,
a consensus on this relationship and its economic significance has not
been reached yet. Chen et al. (2001) investigate the index volatility of
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nine markets and conclude that trading volume contributes some
information to the process of equity index returns. Darrat et al. (2003)
find evidence of significant lead–lag relations between trading volume
and return volatility in a large number of the DJIA stocks. Considering
trading volume as a proxy for the changes in the information set
available to market participants, Donaldson and Kamstra (2005) show
that trading volume has a switching role between volatility forecasts
based on stale information and option-implied estimates. Fuertes et al.
(2009) also utilize trading volume for assigning market conditions for
volatility forecasting. However, it is not certain whether the volume's
informational role can be exploited to enhance performance when
volume is explicitly incorporated into forecasting models. Brooks
(1998) generates GARCH forecasts based on daily data and shows
that augmenting daily stock return volatility models with measures
of lagged volume leads only to very modest improvements, in terms
of forecasting performance.1

Fleming and Kirby (2011) suggest that return volatility and trading
volume exhibit similar long-run dynamics and include the logarithms
of volatility and volume into a trend-stationary fractionally-integrated
process. Their results show only minor gains for improving short-term
volatility forecasts. We address this issue by incorporating trading
volume information into another economically plausible volatility
model with an advanced non-parametric volatility estimator and
utilizing an extensive data set from the German market.

Taking standard liquidity measures into account, Jones et al. (1994)
argue that the positive volatility–volume relation actually reflects the
positive relation between volatility and the number of transactions,
concluding that volatility is generated by the frequency of transactions,
and not by their size. Thus, trading volume carries no information
beyond that contained in the frequency of transactions. Naes and
Skjeltorp (2006) present empirical evidence from order data of the
Oslo Stock Exchange and also confirm that the number of trades is
a more meaningful measure for investigating the relation between
volatility and liquidity. Chan and Fong (2000) examine the number
and size of trades, as well as order imbalances and provide evidence
of their significant role in the volatility–volume relation for a sample
of NYSE and Nasdaq stocks. In this context, the incorporation of the
number of trades apart from the daily transaction volume appears
to be a promising attempt to enhance forecasting accuracy.

Aiming to explain the persistence of volatility established by using
GARCH-type models for 10 actively traded US stocks, Gallo and Pacini
(2000) conclude that the information about the trading activity of the
previous day is inferior to the information which arrives during the
time when the market is closed. Taking overnight jumps into account
when estimating multiday volatility is an important issue especially
for practical purposes. There is a number of studies proposing different
ways to include the impact of information arrivals during the closed-
market time in the context of realized variance (e.g. Fleming et al.,
2003; Hansen and Lunde, 2005; Koopman et al., 2004; Martens, 2002).
Hansen and Lunde (2005) argue that, despite being very noisy,
overnight returns do contain useful information beyond that included
in realized volatility gained by returns observed during open market
time. Using the functional coefficient model of Cai et al. (2000), Gallo
(2001) provides some significant in-sample evidence of the impact
of overnight surprises on intraday returns. However, the overnight
surprises are found not to contribute to a significant improvement
of out-of-sample volatility forecasts. On the other hand, Tseng et al.
(2012) investigate three stock indices on the Taiwan Stock Exchange
incorporating the previous nights' absolute returns into a HAR model.
Their findings indicate that taking information arrivals from the
market's nontrading time into account improves the performance
of volatility forecasts in both in-sample and out-of-sample analyses.

Overall, these findings leave the question of the statistical
significance of the impact of overnight returns and liquidity measures
for volatility forecasting not conclusively clarified. The current study
adopts a similar approach like Tseng et al. (2012) but runs an empirical
analysis for a substantially larger data base, a different sample period
and another asset class, investigating liquidity measures as well as
various specifications of the overnight returns.

The article is arranged as follows. The next section presents the
methodology of the study. Subsequent sections describe the data,
in-sample and out-of-sample results. The final section concludes.

2. Methodology

2.1. Volatility proxy

The sum of squared intraday returns which is known in the recent
literature as realized variance (often also referred to as realized
volatility) firstly proposed by Andersen and Bollerslev (1998) is
currently the most adopted estimator of integrated variance of one
day in discrete settings. Andersen et al. (2003) show that the realized
variance which uses all available data is a consistent estimator of
the integrated variance when there is no microstructure noise. The
increasing availability of high-frequency data and the theoretical
properties of realized volatility make this estimator very appealing.
However, very high-frequency prices are heavily contaminated by
market microstructure effects, such as the bid-ask bounce, which
distort the realized volatility to an extent dependent on the properties
of the noise. The bias caused by microstructure noise is subject of active
research interest (e.g., Bandi and Russell, 2006; Hansen and Lunde,
2006, among others). Various ways of dealing with the distortion due
to microstructure noise are possible. A simple, often adopted solution
of this problem is to sample at lower frequencies, for example every
5 min. Alternatively, several bias correction procedures have been
proposed, such as the subsampling and the kernel-based approaches.2

1 See also Andersen (1996) and Bollerslev and Jubinski (1999) for a literature review of
older studies.

2 A summary of basic assumptions about microstructure noise, their implications for
realized volatility as well as various adjustment approaches can be found in McAleer
and Medeiros (2008).

Table 1
Descriptive statistics of the annualized daily realized ranges.

Mean SD Skew Kurt Min Max

Merck 0.2712 0.1128 1.3738 2.6463 0.0753 0.8231
Fresenius 0.2458 0.1245 1.8079 3.9195 0.0632 0.9451
Henkel 0.2087 0.0847 1.3673 2.5912 0.0514 0.6809
Linde 0.2381 0.1182 1.9317 4.3816 0.0727 0.8718
Lufthansa 0.2805 0.1159 1.8309 4.0017 0.1237 0.9256
Metro 0.2567 0.1322 1.9507 4.1621 0.0806 0.9850
Adidas 0.2176 0.0774 1.1716 1.7647 0.0661 0.5907
MAN 0.2957 0.1331 1.5352 2.9206 0.0975 0.9982
Dt Post 0.2550 0.1096 1.6788 3.3237 0.0993 0.8660
Dt Börse 0.2406 0.0915 1.3007 3.2270 0.0646 0.7828
Continental 0.2455 0.0933 1.8808 7.7579 0.0823 1.0882
ThyssenKrupp 0.2895 0.1280 1.4191 2.3029 0.1008 0.9818
Infineon 0.3268 0.1533 2.1779 5.8454 0.1237 1.3922
Commerzbank 0.2981 0.1492 1.8672 3.9204 0.1035 1.1405
BMW 0.2436 0.1054 2.0664 5.9258 0.0920 0.9736
Bayer 0.2730 0.1474 2.9616 14.7257 0.0983 1.7662
RWE 0.2452 0.1137 2.4037 7.7157 0.0905 0.9936
Volkswagen 0.2530 0.1123 2.0276 5.8363 0.1039 1.0209
BASF 0.2239 0.1028 2.0238 4.9590 0.0878 0.7961
MRück 0.2474 0.1444 2.2727 5.8581 0.0791 1.0328
Dt Telekom 0.2228 0.1085 2.6613 8.2224 0.1115 0.8928
SAP 0.2371 0.1015 1.8407 4.8580 0.0878 0.8843
Daimler 0.2632 0.1170 1.7609 3.4299 0.1068 0.8015
Dt Bank 0.2300 0.1078 2.0729 5.3355 0.0854 0.8434
Siemens 0.2356 0.1087 2.0010 4.6473 0.0974 0.7713
Allianz 0.2490 0.1450 2.2905 6.3322 0.0757 1.1309
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