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We argue that optimal economic growth is confronting serious applicability problems, having nothing to
offer in these days of high public deficits accompanied by high unemployment rates. In particular, the theory
is not capable of indicating optimal savings rates; those are systematically in ranges that can be considered as

unacceptable, or are accompanied by unrealistically high real growth rates. Faulty is the systematic use of ar-
bitrary utility functions, which turn out to be contradictory to competitive equilibrium. We then show how
relying on the hypothesis of competitive equilibrium yields reasonable, perfectly acceptable numbers for

the optimal savings rate.
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1. Introduction

In his Introduction to History (1377), Ibn Khaldun (1958) pro-
nounced excess of consumption in any society as leading to a decline
in civilization. In these years of economic turmoil marked in many
countries by a decrease in the overall savings rate, high deficits as
well as high unemployment rates, one may well wonder why the
question of an optimal savings or investment rate has not yet come
to the foreground. This paper will argue that the fundamental ques-
tion of optimal growth theory, i.e. the determination of optimal
time paths for the economy, namely consumption and investment,
has in fact never been properly answered. We will show that the rea-
sons for this dire situation pertain to the very way the problem has
been posed until now. We will then suggest a possible solution.

2. The traditional methodological setting and its associated challenges

The theoretical problem of economic growth, as it has been consid-
ered until now, is apparently as straightforward to formulate as it is easy
to solve. To demonstrate the latter assertion we will first solve the prob-
lem using direct economic reasoning; we will then give a formal proof.
_.. Suppose we want to find the optimal trajectory of capital, denoted
K , such that society maximizes the sum of discounted consumption
flows

t.
w=[s uice Joreqr (1)
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where U(C) is strictly concave and where the problem is constrained
by

C, = Yi—K = F(K G (£), L G, (1)) —K: @)

Y, stands for net income (net of capital depreciation); Gi(t) and G.(t)
are capital - and labor - augmenting technical progress functions;
F(K.G(t), LGi(t)) is strictly concave with respect to its arguments
(U,V) defined by K,Gk(t) = U, LG (t) = V.

2.1. An immediate, intuitive derivation of the optimal rule of capital
accumulation

It is easy to figure out that investing today in capital goods must be
exactly compensated by rewards in the future. Therefore it should be
possible to determine an optimal trajectory of capital (or an optimal
time path of investment, its derivative) through the following reason-
ing. Suppose that to any flow of consumption C; is associated a utility
flow U(C) with the above-mentioned properties. Then an optimal
trajectory must be such that, at any time t, the cost - or sacrifice -
of investing one unit, equal to the marginal utility of consumption,
must be equal to the sum from time t to infinity of all possibly future
rewards carried by this investment. It should then be such that the
following equality is maintained at each point of time t:

Sacrifice at time t = Sum of future rewards from time t to infinity

which translates as

o= U'(Q)S—f{<1<TGK<T>,LTGL<T>)e‘f it g, 3)
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where exp(—f { i(z)dz) is the discounting factor from t to T of the
utility flow received by society at any time 7 between t and infinity.
Differentiating Eq. (3) with respect to t gives

0 = G (KGO LGL0) + 1D

(4)

the differential equation governing the motion of capital. That the
problem is correctly solved through this direct reasoning will now
be easily confirmed.

2.2. A formal derivation

Applying the Euler equation to (1) where C(t) is replaced by
F(K:Gk(t),L:G(t))—K, we just solve the unconstrained problem

Max g W = [3 U[F(KtGK(t),LtGL(t))—K]e_f i)tz gy (5)

Denoting N (K K, t) the integrand of the above integral and apply-
ing the Euler equation dN/0K—(d/dt) (8N/6K> =0 yields Eq. (4), a
necessary and sufficient condition for maximizing W (by Takayama's
theorem since both U(.) and F(.) are concave).

2.3. The challenges

We should first observe that the inocuous looking Eq. (4) is a
second-order, nonlinear differential equation in K. Using the fact
that C; = F(K:Gk(t),L;G.(t))—K, we have

U'c)=U [F(KtGK(t), LtGL(t))fI'(] .{F'Kf( +Fo G+ Fil+ F'GLCLfK'},

and therefore Eq. (4) is to be written as

"

OF U'[FK G (), LGy (6) K|
i(t) = 5 (K Ge(0), LGy (0)) +— :
U'[F(K G (), LGy (6) =K | (6)
x {F’Kk +Fg Gy +Fil+ F’GLCL—k}.

Here is where a first, technical, difficulty lies. There is no chance
that Eq. (6) yields an analytic solution; the same applies to the corre-
sponding first-order, nonlinear system of equations in (K,C) that can
be derived from Eqgs. (2) and (4):

K = F(K,Gi(0), LG, (6) ~C. )
€ = e 10— (G0, LGy () ®

Only numerical analysis will provide a clue to the two following
concomitant problems:

a) Determining whether, for any kind of utility or production function,
the economy will converge asymptotically toward an equilibrium,
or whether the economy is doomed, heading toward disaster either
by consuming its existing capital or by investing so much that con-
sumption collapses to zero, and

b) determining the initial value Cy leading to equilibrium.

! Why shouldn't we have at time ¢, rather than Eq. (3), the inequality ﬁ” U'(Cr)

g—,‘z(KTGK(T),LTGL(T))e’J"fT"(Z)dZdT > U'(Cy) ? If that inequality applied, it would mean
that we would not have invested enough; indeed, we would have foregone reaping a
potential benefit. Investing one unit more rather than consuming it would decrease
consumption and increase the right-hand side of Eq. (4). Symmetrically, investing
more would decrease the integrand in the left hand. Such a process would have to op-
erate until both sides are equal.

It turns out that in the days of the revival in optimal growth theory
(the sixties), solving such equations numerically was quite laborious,
requiring the use of main-frame computers. Carrying out a complete
qualitative analysis of the stability of Eq. (6) or its corresponding system
of nonlinear, first-order Eqs. (7), (8), would have - and probably did -
put off even the strongest willed. Today however, many softwares en-
able to solve such systems in a few seconds; there is then no excuse
not to examine closely what these equations imply in terms of possible
equilibria and implied savings rates under different assumptions.

A wide array of production functions may be used; one of the most
popular is the CES. We note here that for many years it has been sup-
posed - unfortunately for no good reason - that technical progress
was solely labor-augmenting. In fact, capital-augmenting technical
progress should definitely be part of the basic premises. As to the utility
function, three families have been and still are considered as appropri-
ate: the power function C%, « < 1, the log function logC, and the negative
exponential (—1/8)C~ PC. The two first functions can be collapsed into
the single formulation (C* — 1)/o, because limy . o (C* — 1)/ =
logC, and also because giving an affine change to the utility function (in
this case multiplying C* by 1/a and adding the constant — 1/«) does
not change the Euler equation resulting from the optimization problem.

There is of course no justification why society as a whole should be
considered as valuing consumer goods or services with these functions,
and it seems that the only reason they were declared fit for service
stems from their simplicity, leading to simple expressions for the term
U'(C)/U"(C) in Eq. (8), equal to /(v — 1) in the power case and to — 3
in the negative exponential case. That type of arbitrariness could be itself
a matter of concern. But additional predicaments are to be encountered.

First, it has repeatedly been been shown, through numerical anal-
ysis, that it is a hopeless venture to obtain reasonable growth or sav-
ing paths by having recourse to such utility functions. This goes all the
way back to Frank Ramsey (1928) who, in his path-breaking essay “A
Mathematical Theory of Saving” (1928), trying to put some numbers
on his own model, recognized that “the rate of saving which the rule
requires is greatly in excess of that which anyone would suggest |...]
the amount that should be saved out of a family income of £500
would be about £300”. He added that the concave utility function
he used was “put forward merely as an illustration” (op. cit., p. 548)
but one can imagine that he was disappointed by the result. Did he,
at the time, try to do what many would have done in such circum-
stances, i.e. change the utility function? We will never know.

Three decades later, at the time of the renewal of interest in the
topic, Richard Goodwin (1961) in his essay “The Optimal Growth Path
for an Underdeveloped Economy”(1961) considered two different
growth models; in each of those, at some point of time the optimal sav-
ings rate reached unacceptable levels, also in the order of 60%. (We note
here that in a 2006 conference, Robert Solow declared he remembered
very well reading the Goodwin paper just before or just after its publi-
cation, and being very worried about such high levels of the optimal
savings rate).

For our part, with the generous help of our colleague Ernst Hairer
we have carried out (2009, Chapter 10, pp. 236-257) a thorough quali-
tative test of these utility functions, using the standard model with
labor-augmenting technical progress. For the economy to be on the sta-
ble arm leading to equilibrium, the power functions implied huge, unac-
ceptable initial savings rate whenever o was in the interval [0,1).

To obtain reasonable initial savings values, one has to resort to
negative values for «; but in turn this completely changes the nature
of the utility function: first, it becomes very quickly bounded by the
asymptote given by lim¢ _, o(C* — 1)/aa = —1/a, o < 0; secondly,
the marginal utility decreases at an absurdly high speed. Consider
for instance &« = —3 (by all means not an exceedingly negative
value; we have seen much lower values in the literature). The
asympote of the utility function is 1/3; this value is reached extremely
quickly: already for C = 3, U(C) = 0.32, and for the following values
of C: 0.5, 1.5 and 1.5, the marginal utility U’(C) is lowered from 1.12,
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