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1. Introduction

Since the seminal paper of Granger (1969), Granger non-causality
test among economic time series have become ubiquitous in applied
econometric research. This concept is defined in terms of predictability
of variable x from its own past and the past of another variable y. In par-
ticularly, we say that y Granger-causes x if the past values of y can be
used to predict x more accurately rather than simply using the past
values of x alone. Thus, Granger causality may have more to do with
precedence, or prediction, thanwith causation in the usual sense. How-
ever, apart from these theoretical considerations, there are a number of
methodological issues arising from the various applications of Granger
causality tests. It was shown that the use of non-stationary data in cau-
sality tests can yield spurious causality results (Park and Phillips, 1989;
Sims et al., 1990; Stock and Watson, 1989). Thus, before testing for
Granger causality, it is important to establish the properties of the
time series involved. The common practice, considering for seeking of
simplicity the case of 2 variables, is the following: when both series
are I(0), a vector autoregressive (VAR) model in levels is used; when
one of the series is found I(0) and the other one I(1), VAR is specified
in the level for the I(0) variable and in terms of first difference for the
I(1) variable; when both series are determined I(1) but not
cointegrated, the proper model is VAR in terms of the first differences.
Finally, when the series are cointegrated, we can use a vector error cor-
rection (VECM) model or a VAR model in levels. The weakness of this

strategy is that incorrect conclusions drawn from preliminary analysis
might be carried over onto the causality tests. An alternative method
is the lag-augmented Wald test (see Dolado and Lütkepohl, 1996;
Toda and Yamamoto, 1995). This method does not rely so heavily on
pre-testing. However, the knowledge of themaximum order of integra-
tion is still required. Further, the lag-augmented Wald test may suffer
from size distortion and low power especially for small samples
(Giles, 1997; Mavrotas and Kelly, 2001).

In this paper we propose a new Granger non-causality test based on
the notion of the distance between autoregressive moving average
(ARMA)models, the ARmetric introduced by Piccolo (1990). The advan-
tage of this test is that it can be carried out irrespective of whether the
variables involved are stationary or not and regardless of the existence
of a cointegrating relationship among them. Consequently no pre-
testing for unit roots and cointegration is required. Further, our test
appears to be well-sized and has satisfactorily good power properties.

The remainder of the paper is organized as follows. Section 2 in-
troduces the notion the distance between ARMAmodels and specifies
the relationship between AR metric and Granger causality. Section 3
presents the new Granger non-causality test. Section 4 provides
some Monte Carlo evidence about the finite sample behavior of our
testing procedure in comparison with the lag-augmented Wald test.
Section 5 contains an empirical illustration of testing causality.
Section 6 gives some concluding remarks.

2. Granger causality and AR metric

The AR metric introduced by Piccolo (1990) defines the distance
between two ARMA models in terms of Euclidean distance between
the AR (∞) representations of the ARMA models considered. In a
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VAR framework, this notion can be connected to the concept of
Granger causality considering the ARMA models implied by the VAR.

2.1. The VAR framework

Let the n × 1 vector time series {wt; t ∈ ℤ} be represented by the
VAR model of order p:

A Lð Þwt ¼ �t ð1Þ

where A(L) = In − A1L − A2L
2 − … − ApL

p is an n × n matrix of
polynomials in the lag operator L, and �t is a vector white noise pro-
cess with positive definite covariance matrix. We assume that det
(A(z)) ≠ 0 for |z| b 1. This condition allows non stationarity for the
series, in the sense that the characteristic polynomial of the VAR
model described by equation det (A(z)) = 0 may have roots on the
unit circle. Condition det (A(z)) ≠ 0 for |z| b 1, however, excludes ex-
plicitly explosive processes from our consideration.

Consider the partitionwt ¼ xt ; y′t
� �′ where xt is a scalar time series

and yt is a (n − 1) × 1 vector of time series. Model (1) according to
the partition of wt, can be rewritten as:

1−A11 Lð Þ A12 Lð Þ
A21 Lð Þ I−A22 Lð Þ

� �
xt
yt

� �
¼ �xt

�yt

� �

E
�xt
�yt

� �
�xs �ys �

� � ¼ Σ t ¼ s
0 t≠s

�� ð2Þ

whereAij(L) = ∑ h = 1
p Aij

(h)Lh i, j = 1, 2 arematrix polynomials in the lag
operator L. We assume that 1−A11 (L) ≠ 0 and det(I − A22 (L)) ≠ 0.

In this framework it is well known that yt does not cause xt (denoted
by yt ↛ xt) if and only if

A12 Lð Þ ¼ 0: ð3Þ

2.2. The AR metric

Let zt be a invertible ARMA model defined as

ϕ Lð Þzt ¼ θ Lð Þ�t

where ϕ (L) and θ (L) are polynomials in the lag operator L, with no
common factors, and �t is a white noise process. It is well known
that this process admits the representation:

π Lð Þzt ¼ �t

where the AR(∞) operator is defined by

π Lð Þ ¼ ϕ Lð Þθ Lð Þ−1 ¼ 1−
X∞
i¼1

πiL
i
:

Given the processes xt and yt following two invertible ARMA
models and given their AR(∞) representations {πxi} and {πyi}, the AR
metric between xt and yt is defined as the Euclidean distance between
the corresponding π-weights sequence

d ¼
X∞
i¼1

πxi−πyi

	 
2
" #1

2

: ð4Þ

The AR metric d has been widely used in time series analysis
(Maharaj, 1996; Gonzalo and Lee, 1996; Grimaldi, 2004; Corduas
and Piccolo, 2008; Otranto, 2008, 2010). We observe that (4) is a
well defined measure because of the absolute convergence of the
π-weights sequences. The asymptotic distribution of the maximum
likelihood estimator d̂

2
has been studied in Corduas (1996, 2000),

D'Elia (2000) and Corduas and Piccolo (2008).

2.3. The implied ARMA models

In this subsection we introduce the ARMA models for the variable
of interest x. In particular, we will consider the ARMA model implied
by the VAR under the Granger non-causality condition (3) and the
general ARMA model implied by the unrestricted VAR.

We note that, if the condition (3) holds, then xt follows a univariate
ARMA model given by:

1−A11 Lð Þ½ �xt ¼ �xt : ð5Þ

The general implied ARMA model can be obtained as follows. Pre-
multiplying both sides of (1) by the adjoint Adj (A(L)) of A(L), we obtain

det A Lð Þð Þwt ¼ Adj A Lð Þð Þ�t : ð6Þ

Wenote that each component of Adj (A (L)) �t is a sumof finite order
MAprocesses, thus it is afinite orderMAprocess (see Lütkepohl (2005),
Proposition 11.1). Hence, the subprocess {xt; t ∈ ℤ} follows an ARMA
model given by:

det A Lð Þð Þxt ¼ δ Lð Þut ð7Þ

where ut is univariate white noise and δ (L) is an invertible polynomial
in the lag operator L. More precisely, δ (L) and ut are such that

δ Lð Þut ¼ C1 Lð Þ�t

where

C1 Lð Þ ¼ det A Lð Þð ÞD Lð Þ;−det A Lð Þð ÞD Lð ÞA12 Lð Þ I−A22 Lð Þð Þ−1
h i

with D(L) = [1 − A11(L) − A12(L)(I − A22(L))−1A21(L)]−1 is the first
row of Adj (A(L)). Finally, we observe that xt has also the following
autoregressive representation of infinite order:

φ Lð Þxt ¼ ut

where

φ Lð Þ ¼ det A Lð Þ½ �
δ Lð Þ ¼ 1þ φ1Lþ φ2L

2 þ…

2.4. A characterization of the Granger non-causality

In this subsection we obtain a characterization the Granger non-
causality condition (3), using the notion of distance between ARMA
models measured by Eq. (4). In particular, wewill consider the distance
between the AR(p) model (5) and the ARMA model (7) for the
subprocess {xt; t ∈ Z} implied by the VAR(p) model (1). The distance
according to Eq. (4) between the models (7) and (5) is given by:

d ¼
X∞
i¼1

φi−A ið Þ
11

	 
2
" #1

2

where A11
(i) = 0 for i = p + 1,…

The following proposition provides a characterization of Granger
non-causality.

Proposition 1. A12(L) = 0 if d = 0.

Proof. (⇒) If A12(L) = 0, then

det A Lð Þð Þ ¼ 1−A11 Lð Þð Þdet I−A22 Lð Þð Þ
and

δ Lð Þ ¼ det I−A22 Lð Þð Þ:
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