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This paper presents a European option pricingmodel by applying theModel-Order-Reduction (MOR)method. A
European option pricing theorem based on Black–Scholes' equation is implemented by the Finite-Difference
Method (FDM). However, the numerical models generated by the FDM could be simplified through the MOR
technique, which is based on the concept of an Arnoldi-based Model-Order Reduction algorithm. In terms of
computational cost, the MOR models are at least 2 orders of magnitude faster than the original FDM models
with a negligible compromise in accuracy.
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1. Introduction

An option is a contract giving the buyer a right, but not the obliga-
tion, to buy or sell an underlying asset at a specific price on or before
a certain date and is also a binding contract with strictly defined
terms and properties. A call (put) gives the holder a right to buy (sell)
an asset at a certain price within a specific period of time. A put option
is very similar to having a short position on a stock (Hunt and Kennedy,
2004). If an option can be exercised on the maturity date only, then the
option is a European option. In this paperwe only construct a numerical
model for a European call option, and in the case of a European put
option we can calculate it by using put–call parity.

Over the last fewdecades, there is an important tendency towards in-
terdisciplinary integration in both academic and practitioner areas, for
example, neural networks and fuzzy logic, have been extensively applied
in the field of derivatives' pricing (Grudnitski and Osburn, 1993; Hamid
and Iqbal, 2004; Hutchinson et al., 1994). These artificial intelligence
methods are able to solve several classes of problems that are difficult
and sometimes impossible. This study then focuses on the developments
of a method for creating European option pricing reduced-order models
from FDM (Finite-Difference Method) models. The purpose of this study
is to provide a compact aswell as an accuratemodel for pricing European
options. The basic idea is to apply an Arnoldi-based Model Order

Reduction (MOR) technique [1, 2, 3, 4] on the systemmatrices formulat-
ed by the FDM discretization processes from the Black–Scholes equation
(Wang andWhite, 1998; Yu et al., 2003).1 The MOR technique is a pop-
ular research topic in EDA (electronics design automation) industries,
which speeds up computation and reduces storage requirements by
replacing a large-scale system of differential or difference equations by
one of substantially lower dimension that has nearly the same response
characteristics (Yang and Yen, 2005; Yang and Yu, 2004).

This paper is organized as follows. Section 2 describes the governing
equations (Black–Scholes equation) for European option pricing and the
boundary conditions. The algorithm of MOR is presented in Section 3.
Section 4 presents the simulated cases of a European option pricing
model. Comparisons between the results by the full-meshed FDM
model and the MOR models are then demonstrated and discussed.
Section 5 concludes this paper.

2. European option pricing (Black–Scholes equation)

2.1. Black–Scholes (1973) equation

dSt ¼ μStdt þ σStdWt
dBt ¼ rBtdt;

ð1Þ

Economic Modelling 33 (2013) 533–536

⁎ Corresponding author. Tel.: +1 615 963 7384; fax: +1 615 963 7139.
E-mail address: cchen2@tnstate.edu (C.-D. Chen).

1 Model Order Reduction (MOR) is a branch of systems and control theory, which studies
properties of dynamical systems in application for reducing their complexity, while preserv-
ing (to the possible extent) their input–output behavior. (argued by Model Order Reduction
site at MIT).
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where St is the stock price, μ is the drift term of the stock process, σ is
the volatility of the stock price, Wt is the standard Brownian motion,
Bt is the bond price, and r is the interest rate.

Vt ¼ hSSt þ hBBt ð2Þ

By self-financing assumption [5]:

dVt ¼ hSdSt þ hBdBt
¼ hS μStdt þ σStdWtð Þ þ hB rBtdtð Þ
¼ hSμSt þ hBrBtð Þdt þ hSσStdWt :

ð3Þ

If we assume that the hedging portfolio's price is the function of t
and St, then:

Vt ¼ Vt t; Stð Þ

By the Ito lemma:

dVt ¼
∂Vt

∂t dt þ ∂Vt

∂St
dSt þ

1
2
∂2Vt

∂St2
dStdSt

¼ ∂Vt

∂t dt þ ∂Vt

∂St
μStdt þ σStdWtð Þ þ 1

2
∂2Vt

∂St2
σ2S2t dt

¼ ∂Vt

∂t þ ∂Vt

∂St
μSt þ

1
2
∂2Vt

∂St2
σ2S2t

 !
dt þ ∂Vt

∂St
σStdWt :

ð4Þ

Coefficient matching between Eqs. (3) and (4) results in:

hS ¼
∂Vt

∂St
hB ¼ 1

rBt

∂Vt

∂t þ 1
2
∂2Vt

∂St2
σ2S2t

 !
:

ð5Þ

Substituting Eq. (5) into Eq. (2), we therefore get the standard
Black–Scholes PDE as below:

Vt ¼
∂Vt

∂St
St þ

1
r

∂Vt

∂t þ 1
2
∂2Vt

∂St2
σ2S2t

 !
: ð6Þ

For a European call optionwithmaturity T, we also have a boundary
condition:

Vt T ; STð Þ ¼ max 0; ST−Kð Þ; ð7Þ

where K is the strike price of the call option.

2.2. Transform to diffusion equation

To consider the Black–Scholes Eq. (6), we apply the following
change of variables:

x ¼ ln
St
K

� �
and τ ¼ T−tð Þ 1

2
σ2

� �

u x; τð Þ ¼ eγxþ γ2þkð Þτ Vt

K
;

ð8Þ

where γ ¼ 1
2 k−1ð Þ and k = 2r/σ2. Next, we have:

du
dτ

¼ d2u
dx2

; ð9Þ

with the “u vs. τ” or “u vs. x” curves calculated by the FDM code and
the MOR techniques.

2.3. Boundary condition

The points of interest in the interval [xmin, xmax] are the boundary
points between xmin and xmax. Initially, at τ = 0, we know u(x,τ)
equals the payoff function u(x,0). However, at time points τ > 0, we
have to choose boundary conditions to represent the behavior of
the function u(x,τ) at x → ± ∞.

From put–call parity max(ST − K,0) − max(K − ST,0) = ST − K,
we deduce that the put option is equivalent to a short position on
a forward contract and a long position on a call option with the
same parameters K and T. At time t before expiration, we must then
have:

P tð Þ ¼ Ke−r T−tð Þ−St þ C tð Þ; ð10Þ

where P(t) is the price of the put option at time t, and C(t) is the price
of the call option at time t.

Consider the case when St → 0. The price of a call option goes to
zero:

Cmin ¼ 0: ð11Þ

As St → ∞, the value of a put option goes to zero:

Pmax ¼ 0: ð12Þ

The value of a call option by the put–call parity is again:

Cmax ¼ St−Ke−r T−tð Þ
: ð13Þ

We have to transform these boundary conditions into terms of
(x,τ). The transformation is in Eq. (8). Therefore, the call boundary
condition of Eq. (13) is equivalent to:

usup τð Þ ¼ erxmaxþ γ2þkð Þτ exmax−e−kτ
� �

: ð14Þ

To summarize, for the call option the boundary conditions are:

uinf τð Þ ¼ 0

usup τð Þ ¼ erxmaxþ γ2þkð Þτ exmax−e−kτ
� �

:
ð15Þ

3. Methodology of Model Order Reduction (MOR)

The FDM solver is capable of calculating European options, however,
the computational cost is very expensive if there is a large number of
nodes in the computational domain. Fortunately, the governing equa-
tion as well as the boundary conditions, as shown in Eq. (9) which is a
linear equation, and the systemmatrices generated by the FDMapprox-
imation process for Eq. (9) could be reduced by anArnoldi-basedModel
Order Reduction technique (Marques et al., 2004; Wang and White,
1998; Yu et al., 2003). The computation time of MOR is negligible and
the orders of magnitude are faster than any traditional discretization
schemes such as fine-mesh FDM. A detailed description of the Model
Order Reduction process is as follows.

The dynamic system equation formulated by the FDMapproximation
of governing equation (Eq. (9)) and the boundary conditions (Eq. (15)) is
written as:

_⇀x ¼ A⇀x þ B⇀u
⇀y ¼ CT⇀x þ D⇀u

; ð16Þ

where A is an n × nmatrix, n is the total number of nodes,⇀x is the vec-
torwhich contains the unknown temperature distribution on each node,
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