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In the literature, some researchers found that the high persistence of the volatility can be caused by Markov
regime switching. This concern can be reflected as a unit root problem on the basis of Markov switching
models. In this paper, our main purpose is to provide a Bayesian unit root testing approach for Markov
switching stochastic volatility (MSSV) models. We illustrate the developed approach using S&P 500 daily
return covering the subprime crisis started in 2008.
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1. Introduction

Over the past two decades, as an alternative to the GARCH model,
the stochastic volatility (SV) model, introduced by Taylor (1986), is a
powerful tool to capture the time-varying volatility. In option pricing,
one limitation of the conventional Black–Scholes model is the constant
assumption of the volatility. The traders have to change the assumption
of the volatility in order tomatch themarket prices.Meanwhile, the sto-
chastic volatility setting can capture the clustering pattern observed in
themarket. Themost famous paper byHull andWhite (1987) used con-
tinuous time SV model in option pricing. And Shephard (2005) provid-
ed a detailed reviewof the development of thismodel in finance. The SV
models are also brought to the dynamic stochastic general equilibrium
(DSGE) framework in macroeconomics. Obviously, it is not convincing
to assume that the volatility of the shock in the economy is constant.
Fernandez-Villaverde and Rubio-Ramirez (2007) and Justiniano and
Primiceri (2008) extended the DSGE models with stochastic volatility.

In the empirical literature, researchers often discovered that, in the
real economy, the volatility was highly persistent. However, other styl-
ized facts, such as the structural change, or shift in the mean of the vol-
atility, may cause the persistence of the volatility moving towards one,

see Lamoureux and Lastrapes (1990) and Hamilton and Susmel (1994).
In order to obtain the consistent persistence, So et al. (1998) introduced
regime-switching, proposed by Hamilton (1989), to the conventional
SVmodel. They found that the persistence of the volatilitywould signif-
icantly drop. Actually, it is quite reasonable to allow the heterogeneity
in the mean of the log-volatility. For instance, the so-called ‘bear’ and
‘bull’ markets in finance as well as the booming period and recession
in macro-level economy can be possibly explained by the regime
switching in the volatility. Although there are literatures, such as So
et al. (1998) and Hwang et al. (2007), to argue that the persistence
will drop if regime-switching is modeled, we still cannot completely
confirm whether the close-to-unit-root volatility in pervious SV model
is really caused by the regime switching.

In fact, if we compare the graph of these twomodels, it is difficult to
discern the Markov-switching SV (MSSV) and the basic SV with high
persistence, since both of them show similar clustering pattern. In this
paper, our main idea is to incorporate regime switching into modeling,
then check whether the volatility is still highly persistent. According to
So and Li (1999), checking the volatility persistency can be formulated
as unit root testing problem on the volatility models. So and Li (1999)
first suggested using Bayes factor for testing the unit root in the SV
model where the marginal likelihood method of Chib (1995) was
used to estimate Bayes factor. Li and Yu (2010) pointed out that the
method introduced by So and Li (1999) maybe numerically unreliable.
Hence, Li and Yu (2010) showed that the Bayes factor for testing the
unit root in the SV model can be written as the expectation of the
ratio of un-normalized posteriors with respect to the posterior under
the stationary stochastic volatility model. This idea was followed by
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Zhang et al. (2013), Li et al. (2012) for developing Bayesian unit root
testing in the presence of possible stationary and nonstationary SV
models for random shocks. In our paper, we utilize the same idea to
check the persistence of the volatility in theMarkov switching SVmodel.

The rest of this paper is organized as follows. Section 2 is the brief
review of the estimation of SV and Markov switching SV models. In
Section 3, we detail how to compute the Bayes factor for the unit
root test on Markov switching SV model. In Section 4, we apply the
Bayesian MCMC method to S&P 500 data covering subprime crisis
and obtain the result of the Bayesian unit root test. At last, we
conclude in Section 5.

2. The model

We first consider the basic stochastic volatility model given as
follows:

yt ¼ exp ht=2ð Þut

htþ1 ¼ α þ ϕ ht−αð Þ þ σηηt

h1∼N α;ση
2
.

1−ϕ2
� �� �

;

ð1Þ

where yt is the rate of return of the stock or the growth rate of the mac-
roeconomic data. ht is the log volatility, and it captures the heterogeneity
of the rate of return. Eq. (1) is themotion of the log volatility. And ut and
ηt are independent standard normal random shocks.

Adopting the idea in So et al. (1998), we add Markov-switching
part to the unconditional mean of the log volatilityα, then the
equation of ht can be written as:

htþ1 ¼ αstþ1
þ ϕ ht−αst

� �
þ σηηt

αstþ1
¼ γ1 þ γ2Istþ1≥2 þ…þ γKIstþ1≥K

h1∼N αs1
;ση

2
.

1−ϕ2
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;

ð2Þ

where st is the latent state with support {1,2,…,K} and Istþ1≥i is the
indicator function that attains 1 if st + 1 ≥ i, otherwise attains 0.
Contrasted with the finite mixture model, in the Markov-switching
model, the latent state is governedby afirst orderMarkov chain. The tran-
sition matrix is P with Pi· = (pi1,…,piK) and pij = p(st = j|st−1 = i).
Under this setting, the smaller the α, the less the volatility yt will have.
Here we only look into the case where K = 2. For instance, if γ2 is larger
than 0, than st = 1 indicates that the time series are with low volatilities
and st = 2 implies that the volatilities are high.

2.1. Model estimation

Unlike the GARCH model, the SV model is difficult to be estimated
via the conventional maximum likelihood method, since we cannot
write down the likelihood function analytically. Harvey et al. (1994)
employed the quasi-ML method to SV model. Kim et al. (1998)
proposed Markov chain Monte Carlo method to sample from the
posterior of the parameters. Following similar scheme, we can easily
estimate the MSSVmodel via BayesianMCMCmethod, only by adding
an additional block to the procedure. Albert and Chib (1993)
proposed a discrete filter to obtain the hidden state that governed
the shift of the mean. Carter and Kohn (1994) and Chib (1996) also
developed a discrete filter which is a multi-move sampler.

InMarkov-switching setting, themeanof the log-volatility is drivenby
the hidden state. The identification of the state-specific parameters is a
problem. Fruhwirth-Schnatter (2001) suggested using the permutation
sampler to identify the state-depended parameters. Following their
idea, the permutation sampler is used in this paper. ForMarkov switching
SVmodels, if single-movemethod is used in Gibbs sampler, sampling the
log-volatility from the full conditional distribution π(ht|h−t,γ1,γ2,ϕ,ση,s,y)
(y and s here represent the entire sets of observed data and hidden

states), where h−t means all other log-volatility except ht, is nontrivial
because the single-move method generally adds additional blocks,
which will lower down the convergence speed. In our paper, we adopt
the simulation smoother proposed by De Jong and Shephard (1995),
and plug it into the mixture model, which was suggested by Kim et al.
(1998) to approximate the SV model using seven normal distributions.
The ideal behind the simulation smoother is simple, we do not sample
the log-volatility directly, instead, the ηt — disturbance of the motion of
the log-volatility— is drawn.

After the log-volatility is sampled from its posterior, we are able to
simulate the hidden state from the full conditional distribution
π(s|γ1,γ2,ϕ,ση,h,P) (h here represents the whole set of log-volatilities).
Albert and Chib (1993) developed a discrete filter that allows us to
sample from p(st|s−t,h,θ,P) with θ = {γ1,γ2,ϕ,ση}. Carvalho and Lopes
(2007) utilized the auxiliary particle filter introduced by Pitt and
Shephard (1999) to sample the log-volatility and the hidden state
simultaneously. Here, we modify the discrete filter in Chib (1996) to
fit the parameterization form of our model. Let (sample size N):

St ¼ s1;…; stð Þ; St ¼ st ;…; sNð Þ
Ht ¼ h1;…; htð Þ;Ht ¼ ht ;…;hNð Þ:

Under these notations, the first column is the history of h and s, the
second one is the future information. The current log-volatility ht not
only depends on ht−1 and st, but also the lag hidden state st−1. The
posterior π(s|θ,h,P)can be written in the following way (we suppress
θ and P for convenience):

p SN jHNð Þ ¼ p s1
���S2;HN

� �
� p s2

���S3;HN

� �
�…� p sN HNj Þ:ð ð3Þ

Since st−1will enter into ht, the posterior of the hidden state is a little
bit different from that in Chib (1996). As to the other parts of
full-conditional distributions, the sampling approaches provided in
Kim et al. (1998) are followed. Appendix A collects all details about
Gibbs sampler.

2.2. The prior

In this section, we list the prior distributions of the parameters
used in this paper. We know that in Markov switching SV model
one should choose the prior of the parameters very carefully, because
the improper prior may lead to improper posterior. In So et al. (1998),
they used non-informative prior for the state-dependent parameters,
yet restriction is imposed on the hidden states — the state could not
be degenerated. According to Fruhwirth-Schnatter (2005), if the
model is indeed over-fitted, then the identification constraint cannot
rule out the label switching problem. A simple way for avoiding this
problem is to bound the prior away from the non-identifiable set.
Moreover, it is known that when calculating the Bayes factor, the
result is even more sensitive to the prior than that in the estimation.
If we use improper prior in the calculation of Bayes factor, we may

Fig. 1. Daily return for S&P 500 from Jan. 2, 2005 to Jan. 30, 2009.

Table 1
Summary of the S&P 500 data.

Mean S.D. Skewness Kurtosis

γt −3.6620e–04 0.0149 −0.3304 15.5534
log(yt2) −10.7834 2.5703 −0.8432 5.3010
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