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Volatility forecasting is an important issue in empirical finance. In this paper, the main purpose is to apply the
model averaging techniques to reduce volatility model uncertainty and improve volatility forecasting. Six
GARCH-type models are considered as candidate models for model averaging. As to the Chinese stock market,
the largest emerging market in the world, the empirical study shows that forecast combination using model
averaging can be a better approach than the individual forecasts.
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1. Introduction

Accurate volatility forecasting is one of the key tasks in empirical
finance, such as, investment, security valuation, risk management,
and monetary policy. Consequently, in the past two decades, forecast-
ing volatility in financial markets has attracted growing attention by
academics and practitioners. Engle (1982) first proposed the
so-called Autoregressive Conditional Heteroscedasticity (ARCH)
model for modeling the asset volatility. A generalization of ARCH,
GARCH, was developed by Bollerslev (1986). After that, many general
extensions of these fundamental models have been developed, see
Francq and Zakoian (2010) for an excellent overview. An excellent re-
view about volatility forecasting using these volatility models was re-
cently reported by Poon and Granger (2003).

While the use of models has undeniably led to a better measure-
ment of volatility, it has in turn, given rise to a new problem,
“model risk” or “model uncertainty,”which is linked to the uncertain-
ty of the choice of the volatility model itself. The literature revealed
that discarding model uncertainty can create a large utility or wealth
loss (Avramov, 2002; Rapach et al., 2009). However, with ignoring
model uncertainty, most empirical studies on volatility forecasting fo-
cused on choosing the best model among the candidate models
where the techniques ranging from in-sample criteria through
out-of-sample criteria, such as AIC, BIC, were used.

In this paper, instead of choosing the best model, we use the
model averaging technique to deal with model uncertainty. Several
volatility models are considered to be appropriate candidates for
model averaging. Recognizing that numerous empirical studies
addressed international stock market volatility, but few focused on
the emerging stock markets, we apply the model averaging technique
to Chinese stock market. To the best of our knowledge, this is the first
study to explore the model averaging technique to forecast Chinese
stock market volatility under model uncertainty. This study attempts
to enrich the existing literature by investigating the case of China, the
largest transitional economy in the world, which has a unique market
structure—particularly in the dominance of individual investors over
institutional investors in the stock market (Ng and Wu, 2007).

The remainder of this paper is organized as follows. Section 2 de-
scribes the data and model averaging approach. Section 3 relates the
empirical results and forecasting valuation. Finally, conclusions and
discussions are included in Section 4.

2. Data and methodology

2.1. Data

China has two stock exchanges, the Shanghai Stock Exchange and
the Shenzhen Stock Exchange, which were established on December
19, 1990 and July 3, 1991, respectively. Large companiesmainly go pub-
lic at the Shanghai Stock Exchange, while mid-sized and small compa-
nies at the Shenzhen Stock Exchange. As one of the largest emerging
markets in the world, the Chinese stock market, (the sum of Shanghai
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and Shenzhen stock exchanges), had 2063 listed companies by the end
of 2010, and the market value run up to 30,520 billion yuan.1

In China, the China Securities Regulatory Commission (SCRC) ap-
proves the companies which want to list on the Exchanges, with the Ex-
change itself regulating the trading. Moreover, investors are required to
maintain a capital account with a security dealer and can only trade
under the limit of their capital. Margin trading and short sales are
prohibited. During the period from May 21, 1992 through December 15,
1996, the stock market trading system was significantly modified, as its
price-ceiling was abolished and stock price was determined by the force
of demand and supply.2 On December 16, 1996, the Shanghai and
Shenzhen Stock Exchanges put the 10% limit-up and limit-down pricing
system. The change of trading system can lead to a structure change in
the financial series of stock return data. Hence, if the data of the period
from 1992 to 1996 is included, the volatility will be overestimated. Fur-
thermore,most large and high-quality companieswere listed in Shanghai
Stock Exchanges. Thus, in this paper, we only consider the data of Shang-
hai Composite Index after 1996 to be analyzed.

The raw data are daily stock price indexes (pt) covering the period
from January 2, 1997 to December 31, 2010, which makes a total of
3385 daily observations. The data come from Wind Financial data-
base. Daily returns are identified as the first difference in the natural
logarithm of the closing index value for two consecutive trading days,
that is, rt = ln(pt/pt − 1). According to Merton (1980) and Perry
(1982), the realized volatility in a month can be simply calculated
as the sum of squared daily returns in the corresponding month,

σ2
T ¼

XNt

t¼1

r2t : ð1Þ

where Nt is the number of trading days in this month t.
Table 1 contains some summary statistics. We can find that the

skewness is negative, which indicates the distribution is non-
symmetric. Moreover, the large kurtosis suggests that the return series
are leptokurtic (fat-tailed) and sharply peaked about the mean com-
pared with the normal distribution. Additionally, the JB statistic rejects
the null hypothesis of normal distribution.

2.2. Model averaging technique

The standard GARCH(1,1) model is often used to forecast the asset
volatility. We model rt as rt = μ + εt, assuming that the error (εt) is
distributed as normal distribution with zero mean and variance σt

2.
The GARCH(1,1) evaluates the positive and negative εt of the same
magnitude equally, which is given by

σ2
t ¼ α0 þ α1ε

2
t−1 þ βσ2

t−1 ð2Þ

However, the GARCHmodel cannot explain asymmetry in the volatility.
The EGARCH(1,1) and GJR-GARCH(1,1) models, conversely, allow
asymmetry in the conditional volatility equation respectively given by:
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σ2
t ¼ α0 þ α1ε

2
t−1 þ α2ε

2
t−1D

−
t−1 þ βσ2

t−1 ð4Þ

where Dt − 1
− is a dummy variable taking the value of 1 if εt − 1 b 0, and

0 otherwise. In addition, the return distribution is often shown as
fatter tails (see the summary statistics in Table 1). Hence, the condition-
al normality in GARCH models can be replaced by t distributions.
Thus, in this paper, we use the following six models for model averag-
ing: GARCH(1,1), GARCH(1,1) − t, EGARCH(1,1), EGARCH(1,1) − t,
GJR-GARCH(1,1), and GJR-GARCH(1,1) − t.

The data are divided into two parts: one is used as the training set
to estimate the parameters, while the other is used to evaluate the
forecasting effect. In order to evaluate the forecast effect, we consid-
er three different choices of training sample. In the first case, the first
84 monthly observations (from January 1997 to December 2003) are
used as training samples; in the second case, the first two-thirds
(from January 1997 to April 2005), 112 monthly observations are
used; in the third case, the first three quarters (from January 1997
to June 2006), 126 monthly observations, are used. We make
the one-step-ahead forecast of the day's volatility, and then roll the
sample forward one observation at a time, constructing a new
one-step-ahead forecast at each stage. These out-of-sample forecasts
of daily variance are summed up to obtain the monthly total
volatility.

For our study, we use the model averaging strategies to generate
the forecasts. The combination forecasts of bσ2

c;t at month t are weight-
ed averages of the N = 6 individual forecasts given as follows:

bσ2
c;t ¼

XN
i¼1

ωi;t bσ2
i;t ð5Þ

where {ωi,t}i = 1
N are the weights at month t. bσ2

i;t are the single fore-
casts of each individual model at month t. Five different averaging
strategies are adopted to generate the forecasts as follows:

1) simple mean weight averaging: ωi;t ¼ 1
�
N for i = 1, …, N

2) median averaging: the median of bσ2
i;t

n oN

i¼1
is used

3) trimmed mean averaging: set ωi,t = 0 for the individual forecasts
with the smallest and largest magnitudes and ωi;t ¼ 1

�
N−2ð Þ for the

remaining individual forecasts
4) regression combination approach by Clements and Hendry

(1998): the combination weights are derived from the following
regression:

σ2
t ¼ α0 þ α1bσ2

1;t þ α2 bσ2
2;t þ ⋯þ αN bσN;t þ ξt ð6Þ

where σt
2 is the monthly realized volatility in Eq. (1) and bσ2

i;t , i =
1, 2, …, N are N different forecasts of individual forecasts. The
resulting combination forecast is then given by

bσ2
c;t ¼ bα0 þ bα1bσ2

1;t þ bα2 bσ2
2;t þ ⋯þ bαN bσ2

N;t ð7Þ

where bσ2
c;t is the combination forecast. We consider the OLS fixed

weights. The fixed weights allow for the initial period of 20
monthly forecasts to be used for estimating weights, while the
remaining forecasts are used for the purpose of comparison.

5) the ordinary least square (OLS) time-varying weights are also con-
sidered on the basis of a regression-based averaging approach. For
the OLS time-varying weights, combination weights are obtained
by estimating Eq. (6) on forecasts from t − 20 to t − 1. We com-
bine the various individual forecasts bσ2

i;t at month t using these
weights and then roll the window of forecasts to get new combi-
nations of weights.

3. Empirical result

Following Brailsford and Faff (1996), we evaluate the forecast per-
formance by the symmetric and asymmetric statistical loss functions.
The symmetric loss functions are the mean absolute error (MAE), the

1 By the end of 2010, the New York Stock Exchange had 2317 listed companies with
13,394 billion dollars in market value, which converted a total of 88.71 trillion yuan for
6.6227 yuan per dollar.

2 On May 21, 1992, the Shanghai Stock Exchange abolished the limit-up and limit-
down price system, causing the Shanghai Stock Market Index to rise more than 104%
on that day. This is the largest increase ever experienced.
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