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In this paper, risk metrics in capital growth and drawdown as a financial risk measure were considered.
Moreover, we developed a dynamic portfolio management model with constraints on the maximal draw-
down. Exact optimization algorithms run into difficulties in this framework and this motivates the investiga-
tion of simulated annealing optimized algorithm to solve the problem of maximizing long term growth of
simultaneous risky investment. Empirical research indicates that the approach is inspiring for this class of
portfolio optimization problems.

Published by Elsevier B.V.

1. Introduction

Optimal capital growth is a longstanding issue in both practical
portfolio management and academic research on portfolio theory.
Early work on this topic was mainly focused on the mean–variance
approach (Markowitz, 1952). An alternative approach was proposed
by Kelly (1956) who maximized the long term growth rate of the
investor's capital. This was called Kelly capital growth theory or log
strategy. Breiman (1961) proved that log strategy will, in the long
run, beat any different strategy, almost surely. Subsequent works
can be found in Latane (1959), Thorp (1969), Brown et al. (2006),
and Browne and Whitt (1996).

Measures of risk have a crucial role in optimization under uncer-
tainty, especially in coping with the losses that might be incurred in
finance. Value at risk is a popular measure of risk which has been
written into industry regulations. Other measures such as expected
shortfall were suggested as practicable and alternative to value at
risk. Feller (1950) investigated the ruin risk. Zhao et al. (2004) de-
scribed risk metrics in capital growth process. In recent decades, gen-
eral approaches to risk measure have been proposed (for details of
this field see Uryasef et al., 2004).

The mean variance optimization is the cornerstone of modern fi-
nance theory, but it seems astonishing that investment practitioners
do not put it to use more often. One argument often advanced is
that expected returns, risks and correlations are measured with sub-
stantial error. Another criticism is the assumption of the normality
of the returns, which is dismissed by practitioners in order to account
for the fat tailedness and the asymmetry of the asset returns. Capital
growth theory was applied by many institutional investors to run a

superior hedge fund (Ziemba and Ziemba, 2007). However, the
major shortcoming of the original capital growth approach is its
lack of risk metric mechanism. From a practical point of view, the
original model may often be considered too basic, which can not
been applied to investment.

The present work is an extension of the basic model with risk con-
straints in capital growth process. We will show that a number of well
known risk measures, including the risk of ruin measure, traditional
variance measure, and shortfall measure, are special cases of the
drawdown approach. The original model ignores many of the con-
straints faced by real world investors: trading limitations, size of the
portfolio, risk measure, etc. It is more difficult to solve the optimal
model with these constraints and analytical approach fails to solve
the problem. Therefore, we investigate the simulated annealing to
solve the problem of maximizing long term growth. The solution
has widespread applications in asset allocation, which reduce the
bias to a sufficiently small level.

This paper is organized as follows. In Section 2 we briefly overview
the capital growth theory and related results. In Section 3 we investi-
gate the risk metrics and drawdown in asset allocation. In Section 4
we develop a dynamic portfolio management model with drawdown
constraints and investigate the optimized algorithm. Finally in
Section 5, we finished empirical research in real financial data and
output performance and risk results. We show that in consequence,
this model and optimized algorithm are valuable to institutional
investors.

2. Short summary of the capital growth theory

Let the initial bankroll be W0. We assume that the investor has
found a positive expectation game and is able to play this game re-
peatedly for n iterations, after which the bankroll is Wn. Suppose
that our winning probability is p and the probability of losing is q=
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1−p. Game return Ri is defined as Ri=(Wi−Wi−1)/Wi−1 where Wi

is the wealth after i turns.
The investor bets fraction fi of the actual wealth in each turn. After

n turns the investor's wealth is equal to

Wn ¼ W0∏
n

i¼1
1þ f iRið Þ: ð1Þ

Because the returns are independent, the average wealth after n
turns can be written as

Wnh i ¼ W0∏
n

i¼1
1þ E f iRi½ �ð Þ: ð2Þ

Since the game has a positive expectation, E[fiRi]>0 in this situa-
tion, in order to maximize 〈Wn〉 we would maximize E[fiRi] at each
trial. The optimal strategy is to stake everything in each turn. Howev-
er, the probability of ruin is given by 1−pn, limn→∞(1−pn)=1 so
ruin is almost sure. Thus maximization of 〈Wn〉 is not a good criterion.
An asymptotically optimal strategy was first proposed by Kelly
(1956).

Kelly chose to maximize the exponential growth rate of the
investor's wealth

lim
n→∞

1
n
ln

Wn

W0
¼ lim

n→∞
1
n

Xn
n¼1

ln 1þ f iRið Þ ¼ ln 1þ f iRið Þh i: ð3Þ

We refer to a trade's reward to risk ratio as an Rmultiple, which is
simply a symbol for the initial risk. The Kelly strategy assumes that
the probability of success and the pay off ratio are likely to vary across
trades. The trader knows the likely reward and permissible risk on a
trade before its initiation. Based on past experience, the trader can es-
timate the probability of success.

For the risky game introduced above, Eq. (3) can be rearranged as

G fð Þ ¼ p ln 1þ afð Þ þ 1−pð Þ ln 1−bfð Þ ð4Þ

where a and b are R multiples. Note that

G′ fð Þ ¼ pa
1þ af

− 1−pð Þb
1−bf

¼ 0 ð5Þ

when f ¼ f � ¼ paþpb−b
ab . Now

G″ fð Þ ¼ − pa2

1þ afð Þ2 −
1−pð Þb2
1−bfð Þ2 b0: ð6Þ

G(f) has a unique maximum at f= f∗, whereG f �ð Þ ¼ p ln paþ pbð Þþ
1−pð Þ ln aþbð Þ 1−pð Þ

a . Moreover, G(fc)=0 so we get unique number fc>0,
where 0b f∗b fcb1.

After n turns the log of average bankroll will tend to G(f∗)n times
as much money as it started with. Numbers of trade equal to

n ¼ 1
G f �ð Þ ln

Wn

W0
: ð7Þ

Suppose the random variable X has a sample description space of
m values, x1,…,xm, with relevant probabilities p1,…,pm. Population
geometric mean return can be written as

PGMR ¼ ∏
m

i¼1
xið Þpi−1: ð8Þ

In the case when the random variable is discrete it is easy to show
that

ln 1þ PGMRð Þ ¼
Xm
i¼1

pi ln xi ¼ E ln X½ �: ð9Þ

So, maximizing PGMR is equivalent to maximizing E[ln X]. For any
strategy

PGMR ¼ eE lnX½ �−1: ð10Þ

Thorp (1969) shows that the investor's fortune will exceed any
fixed bound when f is chosen in the internal (0,fc). But, if f> fc, ruin is
almost sure. If f= fc, Wn will oscillate randomly between 0 and +∞.
Breiman (1961) shows that the strategy of maximizing E[log Xn] will,
in the long run, beat any significantly different strategy, almost surely.

Samuelson (1971) states that E[log] maximization is for the spe-
cial utility function u(w)=log w and not for other utility functions.
Samuelson's criticisms are with the pure theory and not in conflict
with any of the conclusions of the Kelly criterion. He makes a few
points in his paper (Samuelson, 1979): first, those who follow the
rule maximization of mean log of wealth with higher and higher
probability will have more wealth in the long run than those who
use an essentially different strategy. Second, some of those who
have favorable asset returns period by period and maximize the
expected log of wealth can lose a lot. Third, the expected log maxi-
mizing strategy is in some sense better than a strategy based on
some other utility function.

Markowitz (1976) argues that when one traces out the set
of mean variance efficient portfolios, which gives approximately
the maximum E[log X]. Young and Trent (1969) proved that
E log Xið Þ½ �≈ logE−1

2
V
E2

� �
,where X=gross return, E=E[X] and V=

VarX. Markowitz argues that the Kelly portfolio should be considered
the upper limit for conservative choice among E,V efficient portfolios.
An investor might prefer a lower mean and variance giving up return
in the long run for stability in the short run.

Kelly has essentially zero risk aversion since its Arrow Pratt abso-
lute risk aversion index is

−u″ wð Þ=u′ wð Þ ¼ 1
w

ð11Þ

which is essentially zero. The absolute risk aversion is a measure of
the curvature of an individual's utility function. Hence it never allo-
cates more than the Kelly optimal fraction because then risk increases
and growth decreases. As you allocate more and more above the Kelly
optimal fraction, its properties become worse and worse. When you
allocate exactly twice the Kelly optimal fraction, then the growth
rate is zero plus the risk free rate. If you allocate more than double
the Kelly criterion, then you will have a negative growth rate. Long
term capital is an example of overbetting leading to disaster.

Thus you must either allocate Kelly or less. We call allocating less
than Kelly fractional Kelly, which is simply a blend of Kelly and cash.
Consider the negative power utility function δωδ for δb0. This utility
function is concave and when δ→0 it converges to log utility. As δ
gets larger negatively, the investor is less aggressive since his Arrow
Pratt risk aversion is higher. For a given δ and α ¼ 1

1−δ between
0 and 1, α is invested in the Kelly portfolio and 1−α is invested in
cash.

3. Risk metrics in capital growth process and drawdown

Measures of risk have a crucial role in optimization under uncer-
tainty, especially in coping with the losses that might be incurred in
asset management industry. In this section, a drawdown approach
to investment risk was investigated. Drawdown risk measures are
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