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A spatial errormodel is classified as a geostatisticalmodel or aweightmatrixmodel on the basis of themethod of
specification of spatial autocorrelation in the disturbance. Specification errors cannot be assumed to be absent,
and the robustness of alternative specifications is useful for dealing with potential errors. Previous studies
compared severalmodels to arrive at two basic conclusions: (i) all of themodelsmaintain reasonable estimation
accuracy, and (ii) the two types of models have well-matched predictive abilities. The present study makes a
supplementary comparison to investigate whether these conclusions are true for a broader range of models.
Also, implications of our results for the model choice are explored.
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1. Introduction

A linear regressionmodel is called a spatial errormodelwhen spatial
autocorrelation is present in the disturbance. A spatial error model is
classified as a geostatistical model or a weight matrix model on the
basis of the method of specification of spatial autocorrelation. The
geostatistical model is defined with a correlation function, which is a
device to specify the autocorrelation in a direct manner, whereas the
weight matrix model is defined with a weight matrix, which is a device
to specify it in an indirect manner. Unfortunately, errors cannot be
assumed to be absent in any specification. As stated in Anselin (2002),
even when the type of model is known, the choice of the correct corre-
lation function or weight matrix is not theoretically guaranteed under
any circumstances, and only a few incorrect choices can be practically
eliminated using validation techniques. Thus, it is useful to explore
the robustness of spatial autocorrelation specifications. Choosing a rela-
tively well-performing model is a good policy to allow for specification
errors.

In a recent study, Dubin (2003) took important steps toward explor-
ing the robustness of alternative specifications. Under a reciprocal proce-
dure, she performed a series of Monte Carlo experiments to compare
three geostatistical and five weight matrix models, and found two
basic conclusions: (i) all of the models maintain reasonable estimation
accuracy, and (ii) the geostatistical models have better predictive abili-
ties than the weight matrix models. Specifically, in each experiment,
one of the models was used as the data generator, and the generated

data were used to examine all of the models with conventional estima-
tors and predictors.1 In a following study, Kato (2008a) took further
steps by showing that the conventional predictor applied to the
geostatistical models is more efficient than that applied to the weight
matrix models. He proposed two alternative predictors for the weight
matrix models to make an optimal comparison of the two types of
models, and tested the dominance of the geostatistical models over
the weight matrix models.2 As expected, in his experiments based on
Dubin (2003), conclusion (i) was confirmed to be sound, but conclusion
(ii) was shown to be unsound. In a comment on Kato (2008a), although
appreciating his results, Dubin (2008) argued that the geostatistical
models are still preferable to the weight matrix models. Two reasons
were adduced in favor of this argument: (i) the difference in the predic-
tive ability between the best and worst models is smaller for the
geostatistical models than for the weightmatrixmodels, and (ii) the pre-
dictive ability of the worst geostatistical model is greater than that of the
worst weight matrix model. In a response to Dubin (2008), although
acknowledging her observations, Kato (2008b) suggested a combined
use of the geostatistical and weight matrix models that have the advan-
tage in predictive ability amongmodels of their respective type. Two rea-
sons were produced in support of this suggestion: (i) all of the models
offer the best prediction performance only in a limited number of
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1 Actually, Dubin (2003) did not use one weight matrix model as the data generator,
but used it in estimation and prediction as a substitute for another weight matrix mod-
el that did not offer the best prediction performance in any experiment.

2 Bourassa et al. (2007) compared the two types of models through an observed data
experiment and concluded that a weight matrix model is not suitable for the purpose
of prediction. Kato (2008a) showed that they applied to the weight matrix model a less
efficient predictor than Dubin (2003).
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experiments, and (ii) neither of the two types of models is dominant.
Interestingly, the most advantageous weight matrix model is a model
that mimics one of the geostatistical models.

The purpose of the present study is to make a supplementary
comparison of spatial error models through a series of Monte Carlo
experiments based on Dubin (2003). This comparison is meant to
explore the robustness of spatial autocorrelation specifications in
the following ways. First, we assess a weight matrix model that
Kato (2008a) considered to be worth assessing in a future study.
This model was proposed by Pace and Gilley (1997) to demonstrate
the benefits from using a spatial error model. Second, we propose
and assess two weight matrix models to consider the above argument
of Dubin (2008). These models mimic two of the three geostatistical
models examined in Dubin (2003) and Kato (2008a), respectively,
in the same manner as one of the five weight matrix models exam-
ined there mimics the third geostatistical model. Observations similar
to those made by Dubin (2008) for the geostatistical models could be
made for the weight matrix models that mimic those models: the dif-
ference in the predictive ability between the best and worst models
could be smaller for the three mimics than for a broader range of
weight matrix models, and the predictive ability of the worst mimic
could be greater than that of the worst weight matrix model. Third,
we investigate whether we can choose the same combination of
geostatistical and weight matrix models as Kato (2008b) when we
consider the three additional models. Different models could be
shown to be the most advantageous geostatistical and weight matrix
models, and there is a possibility of finding an excellent model.

In forming our purpose, we have the hedonic price function in
mind, because the spatial error model is finding wide application to
that function. This is to follow Dubin (2003) and Kato (2008a), and
is not to deny that the model is also applicable to other functions, as
intimated in Arbia et al. (2012). If the term spatial error model is
always used without relating it to any particular function, it is possi-
ble to make our comparison useful for these other functions. This
usage is therefore adopted here. We also have reasons for taking up
only a few weight matrix models as the additional targets of compar-
ison. One reason is that the developments of the two types of models
are different in the hedonic literature. As stated in Palmquist (2005),
geostatistical models used are chiefly limited to the three above,
whereas weight matrix models proposed are widely diverse.3 Anoth-
er reason is that it is not easy to put many models through the above
reciprocal procedure. As the number of models compared increases,
the amount of resources required jumps.

Naturally, the developments of the two types of models in the
hedonic literature are reflected in the experiments of Dubin (2003)
and Kato (2008a), and are influential in the discussions of Dubin
(2008) and Kato (2008b). This indicates that the overall difference in
the predictive ability found between the two types ofmodelsmay be at-
tributable to the difference between the diversities of models consid-
ered for their respective type. Unfortunately, the reason for this
difference in the predictive ability was not explained in any of those
previous studies. Assessment of the above three mimics allows us to
discuss that hypothesis. If the overall performance of these weight
matrix models is found to be similar to that of the three geostatistical
models, the hypothesis may be accepted; otherwise, the difference in
the predictive ability should be basically attributable to the difference
in the method of specification of spatial autocorrelation.

The remainder of the present paper is organized as follows. In
Section 2, we provide the aspects of comparison. Models are defined,
and statistics are described. In Section 3, we perform Monte Carlo
experiments. The design is produced, and the results are discussed.
In Section 4, we summarize the points made in the preceding sections
and mention topics for future study.

2. Aspects of comparison

Themathematical notation of Kato (2008a) is adopted, with minor
modifications, to provide the aspects of comparison. We first define
the geostatistical and weight matrix models before proceeding to
describe the estimators and predictors for the respective types of
models.

2.1. Models

The spatial error model can be expressed as y=Xb+u, where y is
the vector of values of the dependent variable; X is the matrix of
values of the independent variables, with the first column comprising
ones; b is the vector of regression parameters b1, b2, ⋯, and bm; and u
is the vector of values of the disturbance.4 In this model, u is assumed
to have a normal distribution with expectation 0 and covariance
σ2K(D;c), where σ2 is a nuisance parameter, c is the vector of spatial
autocorrelation parameters c1 and c2, D is a symmetric matrix of
distances separating the locations included in the population, and
K( ∘ ;c) is a function in which the input and output are matrices of
the same order. The model is classified as a geostatistical model or a
weight matrix model on the basis of the method of specification of
K( ∘ ;c). In the geostatistical model, K(D;c) is set to [ F(Dij;c) ],
where Dij expresses the ijth element of D, which is the distance
between the ith and jth locations, and F( ∘ ;c) is a function in
which the input and output are scalars.5 This function is known as
a correlation function, and its use indicates that the covariance be-
tween the disturbances associated with a pair of locations depends
only on the separation distance of that pair. In the weight matrix

model, K(D;c) is set to I−c1W D; c2ð Þð Þ′ I−c1W D; c2ð Þð Þ
n o−1

, where

W( ∘ ;c2) is a function in which the input and output are matrices
of the same order. The output is known as a weight matrix, and its
use indicates that the covariance between the disturbances associated
with a pair of locations depends on the separation distances of all
pairs.6

As an expedient for model definition, we assign the same names as
Dubin (2003) and Kato (2008a) to their originally compared three
geostatistical and five weight matrix models: NEGE, GSS, and SPH
to the former models and NN, K, P, LIM, and NEW to the latter.
Geostatistical models vary in accordance with the specification of
the form of the correlation function, which determines the elements
of K(D;c). In the NEGE model, the ijth element is equal to 1 if Dij=0,
and c1exp(−Dij/c2) if Dij>0, whereas in the GSS model, it is equal to

1 if Dij=0, and c1exp − Dij=c2
� �2� �

if Dij>0. The corresponding

element of the SPH model is equal to 1 if Dij=0, c1(1−3Dij/
2c2+Dij

3/2c23) if 0bDijbc2, and 0 if Dij≧c2. The abbreviations NEGE,
GSS, and SPH reflect the choices of the negative exponential, Gaussian,
and spherical forms for the correlation function, respectively. Weight
matrix models vary in accordance with the specification of the
elements of the matrix from which the weight matrix is derived by
row standardization. In the NN model, the ijth element is equal to 1
if Dij>0 and the jth location is one of the c2 locations nearest to
the ith location, and 0 otherwise. The abbreviation NN reflects the
property that the element is specified with nearest neighbors. In the

3 Interestingly, Palmquist (2005) saw practical merit in the weight matrix model of
Pace and Gilley (1997), which supports our assessment of that model.

4 When the context of the discussion leaves no ambiguity, the dimensions of vectors
and matrices are not elucidated.

5 In this setting, a shorthand device is adopted to represent the elements of K(D;c).
6 The dimensions of 0 and I vary according to the context of the discussion. It is note-

worthy that if the prevailing definition is applied to the weight matrix, W(D;c2) can be
replaced with W(D). Dubin (2003) and Kato (2008a) demonstrated that the paramet-
ric definition is superior to the prevailing definition. For an empirical application of the
parametric definition, see Pace and Gilley (1997). It is also noteworthy that the above
definition of the weight matrix model is based on the simultaneous approach. As stated
in Militino et al. (2004), the conditional approach is rarely adopted in the hedonic liter-
ature. For reasons for such rarity, see Anselin (1988).
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