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In this paper, we consider a perturbed compound Poisson risk model with investment and debit interests.
Dividends are paid to the shareholders according to a threshold dividend strategy. An alternative assumption
is that when the surplus is negative, a debit interest is applied and when the surplus is above a certain
positive level, the insurer could earn investment interest. Integro-differential equations with boundary condi-
tions satisfied by the moment-generating function, the nth moment of the present value of all dividends until
absolute ruin and the Gerber–Shiu expected discounted penalty function are obtained. Then, we present the
explicit expressions for the zero discounted nth moment of the present value of all dividends until absolute
ruin in the case of exponential claims. Finally, numerical example is also given to illustrate the effect of the related
parameters on the first moment of the present value of all dividends until absolute ruin.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The classical risk model perturbed by a diffusion was first intro-
duced by Gerber (1970) and has been further studied by many
authors during the last few years. See, for example, Tsai and Willmot
(2002), Cai and Yang (2005), Wan (2007), Gao and Yin (2008), Wang
and Wu (2008), Albrecher and Thonhausera (2008), Gao and Liu
(2010), Zhang et al. (2010), Liu and Liu (2011), Zhang (2012) and the
references therein. Generally, when the surplus is below zero, we say
that ruin occurs in the classical risk theory. But in reality, when the
surplus falls below zero or the insurer is on deficit, the insurer could
borrow an amount of money equal to the deficits at a debit interest
rate to continue his/her business. Meanwhile, the insurer will repay
the debts continuously fromhis/her premium income. Thus, the surplus
of the insurer is driven under the debit interest rate when the surplus is
negative. The negative surplusmay return to a positive level if debts are
reasonable. However, it is clear that when the negative surplus reaches
some certain level, the surplus is no longer able to recover, and conse-
quently absolute ruin occurs at this moment.

Absolute ruin probability is an important risk measure and has been
frequently considered in recent research works. Dassios and Embrechts
(1989) derive an explicit expression for the probability of absolute ruin
in the case of exponentially distributed individual claim amounts using
a martingale approach. Cai (2007) considers the Gerber–Shiu discounted
penalty function under absolute ruin. Zhu and Yang (2008) obtain

asymptotic results for a more practical case with a higher borrowing
rate. Yang et al. (2008) investigate the absolute ruin problems in a
multi-layer compound Poisson model with constant interest force. Yuan
and Hu (2008) study the absolute ruin in the compound Poisson risk
model with nonnegative interest and a constant dividend barrier. Wang
et al. (2010) consider the dividend payments in a compound Poisson
risk model with credit and debit interests under absolute ruin. Zhang et
al. (2011) study an absolute ruin model where claims arrive according
to aMarkovian arrival process. Li and Liu (2012) investigate a regulated
risk process, which is modeled by interest and linear dividend barrier.
Under absolute ruin, the expected discounted dividends are derived
by PDMPmethod. Explicit solutions and numerical results are obtained
for exponential claims. Bai and Song (2012) consider the probability of
random time absolute ruin in the renewal riskmodel with constant pre-
miumrate and constant force of interest. However, there is nowork that
deals with perturbed compound Poisson risk model with investment
and threshold strategy under absolute ruin. This motivates us to
investigate such a risk model in this work. Inspired by the work of Gao
and Liu (2010), we will extend their results to absolute ruin risk model.

The rest of the paper is organized as follows. In Section 2, we describe
the riskmodel. In Section 3, integro-differential equationswith boundary
conditions satisfied by themoment-generating function and the nthmo-
ment of the present value of all dividends until absolute ruin are derived.
In Section 4, we give the integro-differential equations satisfied by the
Gerber–Shiu expected discounted penalty function. As applications, in
Section 5, we present explicit expressions for the nth moment of the
present value of all dividends until absolute ruin for exponential claims
when the interest force is zero. Finally, in Section 6, we use numerical
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example to illustrate the impact of the related parameters on the first
moment of the present value of all dividends until absolute ruin.

2. The risk model

In the actuarial literature, the surplus process of an insurance com-
pany is often modeled by the following perturbed compound Poisson
risk process

U tð Þ ¼ uþ ct−
XN tð Þ

n¼1

Xn þ σB tð Þ; t ≥ 0 ; ð2:1Þ

where u≥0 is the initial surplus, c>0 is the gross premium rate, {N(t),
t≥0} is a Poisson processwith jump intensityλ>0denoting the number
of claims up to time t, and {Xn; n≥1}, representing the sizes of claims
and independent of {N(t), t≥0}, is a sequence of independent and iden-
tically distributed nonnegative random variables with a common distri-
bution function F(x) which satisfies F(0)=0 and has a positive mean

μ ¼ ∫∞
0
F xð Þdx > 0. Here, F xð Þ ¼ 1−F xð Þ is the survival function of F(x).

The net profit condition is given by c>λE[Xi]. σ>0 is a constant,
representing the diffusion volatility parameter. {B(t), t≥0} is a standard
Brownian motion with B(0)=0. In addition, {N(t), t≥0}, {Xn; n≥1} and
{B(t), t≥0} are mutually independent.

Recently, Gao and Liu (2010) consider the compound Poisson risk
model perturbed by diffusion with constant interest and a threshold
dividend strategy. Under the threshold dividend strategy, whenever the
surplus is above b, dividends are paid continuously at a constant rate ε.
However when the surplus is below the level b, no dividends are paid.
Then, integro-differential equations with certain boundary conditions
for the moment-generation function and the nth moment of the present
value of all dividends until ruin are derived. Motivated by the work of
Gao and Liu (2010), we consider the following extension of model
(2.1) which is enriched by investment, debit and threshold strategy.

We denote the aggregate dividends paid in the time interval [0, t]
by D(t) and the modified surplus by Ub(t)=U(t)−D(t), which is the
insurer's surplus at time t and Ub(0)=u. We assume that the insurer
pays dividends according to the following strategy governed by
threshold parameters b>0 and dividend rate ε>0. Whenever the
modified surplus Ub(t) is below the level b, no dividends are paid
and the constant premium income rate is c1>0. However, when the
modified surplus Ub(t) is above b, dividends are paid continuously
at a constant rate ε (0bεbc1), meanwhile the insurer could earn
interest at investment rate γ>0. The insurer could borrow an amount
of money equal to the deficit at a debit interest force β when the
surplus is negative. Meanwhile, the insurer will repay the debts
continuously from her/his premium income. But when the surplus is
below −c1/β, the insurer cannot repay all her/his debts for her/his
premium income, then the insurer is no longer allowed to run her/his
business. Then the modified surplus process Ub(t) is given by

dUb tð Þ ¼
c2 þ γUb tð Þð Þdt−dS tð Þ þ σdB tð Þ; Ub tð Þ > b;
c1dt−dS tð Þ þ σdB tð Þ; 0≤Ub tð Þ≤ b;
c1 þ βUb tð Þð Þdt−dS tð Þ þ σdB tð Þ; −c1=β≤Ub tð Þ≤ 0;

8<
: ð2:2Þ

where, c2=c1−ε is the net premium rate after dividend payments and
S(t)=∑n=1

N(t) Xn.
We denote the absolute ruin time of the modified surplus process

Ub(t) by Tb, which is defined by

Tb ¼ inf t ≥ 0 : Ub tð Þ≤−c1=βf g;

and Tb=∞ if Ub(t)>−c1/β, for all t≥0. Let α>0 be the force of
interest valuation, then the present value of all dividends until Tb is
defined by

Du;b ¼ ∫Tb

0
e−αtdD tð Þ: ð2:3Þ

An alternative expression for Du,b is

Du;b ¼ ε∫Tb

0
e−αt I Ub tð Þ > bð Þdt: ð2:4Þ

It is obvious that 0bDu,b≤ε/α.
In the sequelwewill be interested in themoment-generating function

M u; y; bð Þ ¼ E eyDu;b
h i

; ð2:5Þ

and the nth moment function

Vn u; bð Þ ¼ E Dn
u;b

h i
; n∈N; ð2:6Þ

with V0(u;b)=1, and the Gerber–Shiu expected discounted penalty
function

Φ u; bð Þ ¼ E e−αTbω Ub Tb−ð Þ; Ub Tbð Þj jð ÞI Tbb∞ð Þ Ub 0ð Þ ¼ uj �;
h

ð2:7Þ

where, Ub(Tb−) is the surplus prior to absolute ruin and |Ub(Tb)| is the
deficit at absolute ruin. The penalty functionω(x1, x2) is an arbitrary non-
negative measurable function defined on (−c1/β, +∞)×(c1/β, +∞).
Throughout this paper we assume that M(u, y;b), Vn(u;b) and Φ(u;b)
are sufficiently smooth functions in u and y in their respective domains.

3. Integro-differential equations for M(u, y;b) and Vn(u;b)

Clearly, the moment-generating functionM(u, y;b) behaves differ-
ently, depending on whether its initial surplus u is below zero or
above the barrier level b. Hence, we write

M u; y; bð Þ ¼
M2 u; y; bð Þ; u > b;
M1 u; y; bð Þ; 0≤ u≤ b;
M3 u; y; bð Þ; −c1=β b u≤ 0:

8<
: ð3:1Þ

For notational convenience, let

h1 u; tð Þ ¼ ueβt þ c1 eβt−1
� �

=β; h2 u; tð Þ ¼ ueγt þ c2 eγt−1
� �

=γ:

Theorem 3.1. For 0≤u≤b,

σ2

2
∂2M1 u; y; bð Þ

∂u2 þ c1
∂M1 u; y; bð Þ

∂u ¼ λM1 u; y; bð Þ þ αy
∂M1 u; y; bð Þ

∂y

−λ ∫u

0
M1 u−x; y; bð ÞdF xð Þ þ ∫uþc1β

u
M3 u−x; y; bð ÞdF xð Þ þ F uþ c1=βð Þ

" #
;

ð3:2Þ

and, for u>b,

σ2

2
∂2M2 u; y; bð Þ

∂u2 þ γuþ c2ð Þ ∂M2 u; y; bð Þ
∂u ¼ λM2 u; y; bð Þ þ αy

∂M2ðu; y; bÞ
∂y

−λ
h
∫u−b

0
M2 u−x; y; bð ÞdF xð Þ þ ∫u

u−b
M1 u−x; y; bð ÞdF xð Þ

þ∫uþc1β
u

M3 u−x; y; bð ÞdF xð Þ þ F uþ c1=βð Þ
i
; ð3:3Þ

and, for −c1/β≤u≤0,

σ2

2
∂2M3 u; y; bð Þ

∂u2 þ βuþ c1ð Þ ∂M3 u; y; bð Þ
∂u ¼ λM3 u; y; bð Þ þ αy

∂M3 u; y; bð Þ
∂y

−λ ∫uþc1
β

0
M3 u−x; y; bð ÞdF xð Þ þ F uþ c1=βð Þ

� �
; ð3:4Þ
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