
A closed-form solution to the Ramsey model with logistic population growth

Luca Guerrini
University of Bologna, Department of Mathematics for Economic and Social Sciences, Viale Filopanti 5, 40126 Bologna, Italy

a b s t r a c ta r t i c l e i n f o

Article history:
Accepted 8 March 2010

JEL classification:
O41

Keywords:
Ramsey
Logistic
Closed-form solution

In this paper, we consider the Ramsey growth model with CIES utility function, Cobb–Douglas technology,
and logistic-type population growth law. We show the model to have a unique non-trivial steady-state
equilibrium (a saddle point) and prove the optimal path to be non-monotonic over time. Moreover, we
derive a closed-form solution for the case where capital's share is equal to the reciprocal of the intertemporal
elasticity of substitution.
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1. Introduction

The Ramsey growth model is a neoclassical model of economic
growth based primarily on the work of the economist and mathema-
tician Frank P. Ramsey (1928), who was the first in the long history of
economics to introduce calculus of variation to examine the question
of how much a country would need to save and invest in order to
maximize welfare. His ideas were later taken up independently by
Cass (1965) and Koopmans (1965), and have now become a major
workhorse model in modern macroeconomics. Recently, Accinelli and
Brida (2007) have explored the implications of studying the Ramsey
model within a framework where the change over time of the labor
force is governed by the logistic growth law (for a more general
notion of population than the logistic law see Guerrini, forthcoming).
The resulting model happens to be described by a three dimensional
dynamical system, whose unique non-trivial steady-state equilibrium
is saddle-point stable. According to the Grobman–Hartman theorem
(see Guckenheimer and Holmes, 1983), this local stability implies the
preservation of the topological properties of the system under
linearization in a neighborhood of the steady state. Since two
eigenvalues are real and negative, there exists a plane of stability in
which equilibrium paths converge to the steady state. We demon-
strate that both consumption and capital do not decline monotoni-
cally toward their steady states. Many models of growth, including
Ramsey model, have the property that the transitional dynamics are
determined by a one dimensional stable manifold. As a consequence,
all the variables converge to their respective steady states at the same
constant speed, which is equal to the magnitude of the unique stable

eigenvalue. By contrast, in the present model, the stable transitional
path is a two dimensional locus, thereby introducing important
flexibility to the convergence and transition characteristics. Finally,
we derive a solution to this modified Ramsey model with constant
elasticity preferences and Cobb–Douglas technology under the
assumption that capital's share of GDP is equal to the reciprocal of
the intertemporal elasticity of substitution. This assumption origi-
nates in a nice paper by Xie (1994), re-used in Boucekkine and Ruiz-
Tamarit (2004), Wälde (2005), and later by Chilarescu (2008), Posch
(2009), and Smith (2006, 2007). Note that Boucekkine and Ruiz-
Tamarit (2008) relax this assumption, and Boucekkine et al. (2008)
explore more deeply the properties of the closed-form solutions in
terms of short-term dynamics. Moreover, Chilarescu's paper is
incorrect in many aspects as clarified by Hiraguchi (2009a,b). A final
comment. The parametric restriction that capital's share is equal to
the reciprocal of the intertemporal elasticity of substitution implies
a relatively high intertemporal elasticity of substitution above unity,
which is likely to be a reasonable description of the real world. In
fact, the traditional estimate of capital's share, which is about 0.03
(Simon, 1990), would imply the intertemporal elasticity of substitu-
tion to be as large as 3. Compared to usual average estimates of
the intertemporal elasticity of substitution lying between 0 and 1
(e.g., Vissing-Jørgensen, 2002), this appears high. However, taking
the capital's share in a broad sense, so that it includes human as
well as physical capital, and increasing the capital's share, e.g.,
between 0.66 and 1 (Barro and Sala-i-Martin, 2004, suggest 0.75),
then the intertemporal elasticity of substitution lies between 1 and
1.5. Attanasio and Vissing-Jørgensen (2003), Attanasio and Weber
(1993), Bufman and Leiderman (1990), and Koskievic (1999) found
values of the intertemporal elasticity of substitution in this range.
Hence, with the capital's share between 0.66 and 1, the implied value
for the intertemporal elasticity of substitution appears reasonable.
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2. The optimal control model

We consider the Ramsey growth model introduced by Accinelli
and Brida (2007), where the economy systemmay be seen as a closed
economy inhabited by many identical agents facing the following
optimization problem

max∫
∞

0

c1−1 = σ
t −1
1−1= σ

e−ρtdt;

subject to

k̇t = kαt − δ + a−bLtð Þkt−ct : ð1Þ

In the instantaneous utility function, σ represents the constant
intertemporal elasticity of substitution, ρN0 is the rate of time
preference, and ct is the real per capita consumption of a single good.
Output yt is produced using a stock of productive capital kt according
to the Cobb–Douglas production function f(kt)=kt

a, α∈(0,1). Capital
depreciates at a constant rate δN0. Population Lt evolves according to
the law

L̇t = Lt a−bLtð Þ;a N b N 0: ð2Þ

This equation is called the Verhulst equation (Verhulst, 1838),
and the underlying population model is known as the logistic model.
As a function of time, it is a Bernoulli's differential equation. It is
known that the change of variables w=L−1 transforms it into a
linear first-order differential equation in w, whose solution, assuming
L0=1, is easily found to be Lt=αeαt /(α−b+beαt). Notice that
L∞ = lim

t →∞
Lt = a = b. Solving this continuous-time dynamic problem

involves using calculus of variations. The current-value Hamiltonian
of this optimization problem writes as

H kt ; ct ; Lt ;λtð Þ = c1−1 = σ
t −1
1−1 = σ

+ λt kαt − δ + a−bLtð Þkt−ct
� �

;

where λt is the costate variable associated to the budget constraint
(1). The Pontryagin conditions for optimality are

Hct
= 0⇒ c−1 = σ

t = λt ; ð3Þ

λ̇t = ρλt−Hkt
⇒ λ̇t = −λt αkα−1

t −ρ−δ− a−bLtð Þ
h i

; ð4Þ

together with Eqs. (1) and (2), the boundary condition k0N0, and the
transversality condition lim

t→∞
e−ρtλtkt = 0. Differentiating Eq. (3) with

respect to time, and using formula (3), we can rid Eq. (4) of the λ̇t and
λt expressions. After rearrangement, we arrive at

k̇t = kαt − a−bLt + δð Þkt−ct ; ð5Þ

ċt = σct αkα−1
t − a−bLtð Þ−δ−ρ

h i
; ð6Þ

L̇t = Lt a−bLtð Þ: ð7Þ

These equations, together with the initial condition k0, and the
transversality condition

lim
t→∞

e−ρtc−1 = σ
t kt = 0; ð8Þ

constitute the dynamic system which drives the economy over time.

3. Optimal dynamic path and local stability analysis

Wenow focus on the steady state, which is defined as a situation in
which the growth rates of consumption, capital and population are
zero. An asterisk below a variable will denote its stationary value.

Lemma 1. The unique non-trivial steady state of the economy is

k⁎ =
α

δ + ρ

� � 1
1−α

; c⁎ = kα
⁎ −δk⁎ =

1−αð Þδ + ρ
α

k⁎; L⁎ =
a
b
: ð9Þ

Proof. Eq. (9) is obtained from equating Eqs. (5)–(7) to zero, and
solving the resulting system. □

We have the following result on the long-run behavior of the
model's solution.

Lemma 2. Let kt and ct be solutions of Eqs. (5) and (6), respectively. If
there exists lim

t→∞
kt = k∞, then k∞ is finite and there exists lim

t→∞
ct = c∞b∞.

Moreover, we have (k∞,c∞)=(0,0), (k∞,c∞)=(δ1 / (α−1),0) or (k∞,c∞)=
(k⁎,c⁎).

Proof. Let k̃t be solution of the Solowdifferential equation k̇t=kt
α−δkt.

It is well-known that, as time passes, k̃t converges to its unique non-
trivial steady state. Now, using the fact that 0≤ct and 0≤α−bLt, an
application of a classical comparison theorem for ordinary differential
equations (see Birkhoff and Rota, 1978) yields that kt≤ k̃t. Consequently,
k∞b∞. By Lemma 1 of Guerrini (forthcoming), this fact allows us to
derive that k̇∞=0.Hence, taking t to infinity in Eq. (5), and recalling that
L∞=a/b, we find c∞ = lim

t→∞
ct = kα∞−δk∞, i.e. c∞ exists finite. Applying

again Lemma 1 of Guerrini (forthcoming), we get ċ∞=0 i.e. (k∞α−δk∞)
(αk∞α−1−δ−ρ)=0. If k∞=0 or k∞=δ1 / (α−1), then c∞=0; if k∞=[α/
(δ+ρ)]1 / (1−α)=k⁎, then c∞=c⁎. □

Proposition 1. The steady-state equilibrium (k⁎, c⁎, L⁎) is a saddle point.

Proof. Linearizing around the steady state yields the approximated
dynamic system

k̇t
ċt
L̇t

2
64

3
75= J⁎

kt−k⁎
ct−c⁎
Lt−L⁎

2
4

3
5; with J⁎ =

ρ −1 bk⁎
M 0 σbc⁎
0 0 −a

2
4

3
5;

having set M=σα(α−1)k⁎
α− 2c⁎b0. The Jacobian matrix J⁎ is

obtained by differentiating the right-hand sides of Eqs. (5)–(7) with
respect to the variables kt, ct, Lt, and evaluating them at the steady
state. In order to characterize the local stability of the system, we
need to compute the eigenvalues of J⁎. It is immediate that one root
of J⁎ is λ1=−ab0, while the other two roots are the solutions of the
equation λ2−ρλ+M=0, namely

λ2 =
ρ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2−4M

p
2

b 0; λ3 =
ρ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2−4M

p
2

N 0: □

In conclusion, we have found that J⁎ has one real positive
(unstable) and two real negative (stable) roots. This proves that the
steady state is (locally) a saddle point (Blume and Simon, 1994).

Proposition 1 is closely related to the classical Grobman–Hartman
theorem (see Guckenheimer and Holmes, 1983), which states that
around a hyperbolic equilibrium the qualitative properties of the non-
linear systems (5)–(7) are preserved by its linearization. Our steady
state is clearly hyperbolic because the Jacobian matrix calculated at
that point has no zero or purely imaginary eigenvalues. According to
Proposition 1, there exists a unique optimal path which asymptoti-
cally converges towards the steady state. Because of the transversality
condition (8), the optimal path is restricted to the stable hyperplane,
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