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This paper considers methods for forecasting macroeconomic time series in a framework where the number
of predictors, N, is too large to apply traditional regression models but not sufficiently large to resort to
statistical inference based on double asymptotics. Our interest is motivated by a body of empirical research
suggesting that popular data-rich prediction methods perform best when N ranges from 20 to 40. In order to
accomplish our goal, we resort to partial least squares and principal component regression to consistently
estimate a stable dynamic regression model with many predictors as only the number of observations, T,
diverges. We show both by simulations and empirical applications that the considered methods, especially
partial least squares, compare well to models that are widely used in macroeconomic forecasting.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Growing attention has recently been devoted to forecasting
economic time series in a data rich framework (see, inter alia, Forni
et al., 2005; Stock and Watson, 2002a). In principle, the availability of
large data sets in macroeconomics provides the opportunity to use
many more predictors than those that are conventionally used in
typical small-scale time series models. However, exploiting this richer
information set comes at the price of estimating a larger number of
parameters, thus rendering numerically cumbersome or even impos-
sible the application of traditional multiple regression models.

A standard solution to this problem is imposing a factor structure to
the predictors, such that principal component [PC] techniques can be
applied to extract a small number of components from a large set of
variables. Some key results concerning forecasting withmany predictors
through the application of PCs are given in Stock and Watson (2002a,
2002b) and Forni et al. (2003, 2005). Recently, Gröen and Kapetanios
(2008) have proposed partial least squares [PLS] as alternatives to PCs to
extract the common factors. A different methodological framework is
Bayesian regression as recently advocated by De Mol et al. (2008) and
Banbura et al. (2010). Particularly, these authors attempted to solve the
dimensionality problem by shrinking the forecasting model parameters
using ridge regression [RR].

A common feature of the mentioned approaches is that statistical
inference requires a double asymptotics framework, i.e. both the number
of observations T and the number of predictors N need to diverge to
ensure consistency of the estimators. However, an interesting question

to be posed is how large the predictor setmust be to improve forecasting
performances. At the theoretical level, the answer provided by the
double asymptotics method is clear-cut: the larger N, the smaller is the
mean square forecasting error. However, Watson (2003) found that
factor models offer no substantial predictive gain from increasing N
beyond 50, Boivin and Ng (2006) showed that factors extracted from 40
carefully chosen series yield no less satisfactory results than using 147
series, Banbura et al. (2010) found that a vector autoregressive [VAR]
model with 20 key macroeconomic indicators forecasts as well as a
larger model of 131 variables, and Caggiano et al. (2011) documented
that the best forecasts of the 7 largest European GDPs are obtainedwhen
factors are extracted from 12 to 22 variables only.

The above results advocate in favor of a sort of “medium-N” approach
to macroeconomic forecasting. Specifically, we aim at solving prediction
problems in macroeconomics where N is considerably larger than in
typical small-scale forecasting models but not sufficiently large to resort
to statistical inference that is based on double asymptotics methods. In
order to accomplish this goal, we reconsider some previous results in the
PLS literature in a time-series framework. Particularly, we argue that,
under the so-called Helland and Almoy condition (Helland, 1990;
Helland and Almoy, 1994), both principal component regression [PCR]
and the PLS algorithm due to Wold (1985) provide estimates of a stable
dynamic regression model that are consistent as T only diverges.

Since to date little is known on the statistical properties of PLS in
finite samples, a Monte Carlo study is carried out to evaluate the
forecasting performances of this method in a medium-N environment.
To our knowledge, our simulation analysis is unique in thatwe simulate
time series generated by stationary 20-dimensional VAR(2) processes
that satisfy the Helland and Almoy condition. Indeed, several studies
were devoted to compare PCR and PLS with other methods (see, inter
alia, Almoy, 1996) but always in a static framework. Our results suggest
that dynamic regression models estimated by PCR and, especially, PLS
forecast well when compared to both OLS and RR.
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In the empirical application, we forecast four US macro time series
by a rich variety of methods using similar variables as in the medium
dimension VAR model by Banbura et al. (2010). The empirical
findings indicate that PLS outperforms the competitors. Interestingly,
Lin and Tsay (2006), Gröen and Kapetanios (2008) and Eickmeier and
Ng (2011) reached similar conclusions using PLS as an alternative to
PCs in large-N dynamic factor models.

The remainder of this paper is organized as follows. The main
theoretical features of the suggestedmethods are detailed in Section 2.
The Monte Carlo design and the simulation results are discussed in
Section 3. Section 4 compares various forecasting procedures in
empirical applications to US economic variables. Finally, Section 5
concludes.

2. Dynamic partial least squares and principal
component regression

Let us suppose that the scalar time series to be forecasted, yt, is
generated by the following regression model

ytþ1 ¼ β′Xt þ εtþ1; t ¼ 1;…; T; ð1Þ

where Xt is N-vector of stationary and ergodic time series, possibly
including lags of yt+1, εt is a serially uncorrelated error term with

E εtð Þ ¼ 0, E ε 2
t

� �
¼ σ 2

ε , E ε4t
� �

b∞, and such that E εtþ1
� ��XtÞ ¼ 0.

Moreover, we assume that deterministic elements are absent from
both time series yt and Xt, and that each element of Xt has unit variance.

In order to reduce the number of parameters to be estimated in
model (1), we follow Helland (1990) and Helland and Almoy (1994)
and take the following condition:

Condition 1. (Helland and Almoy) Let E Xtytþ1
� � ¼ Σxy and E XtX ′tð Þ ¼

Σxx ¼ ϒΛϒ′, where ϒ is the eigenvector matrix of Σxx and Λ is the
associated diagonal eigenvalue matrix. We assume that

Σxy ¼ ϒqξ; ð2Þ

where ϒq is a matrix formed by q eigenvectors (not necessarily those
associatedwith the q largest eigenvalues) ofΣxx, and ξ is a q-vectorwith all
the elements different from zero.

The above condition is discussed at length in Helland (1990) and
Næs and Helland (1993). Essentially, it is equivalent to require that
the predictors Xt can be decomposed as

Xt ¼ θRt þ θ⊥Et ;

where Rt=θ′Xt, Et=θ′⊥Xt, θ and θ⊥ are, respectively, orthonormal
matrices of dimension N×q and N×(N−q) such that θθ′= IN−θ⊥θ′⊥,
E RtE′tð Þ ¼ 0, and Σxy ¼ θE Rtytþ1

� �
. Rt and Et are, respectively, called

the relevant and irrelevant components of predictors Xt. The linear
combinations ϒ′qXt that span the space of the relevant components
are then called the relevant principal components.

In principle, Condition 1 is in line with the common view that
macroeconomic time series are mainly led by few aggregate shocks
(e.g. demand and supply shock), which are independent from minor
causes of variability (e.g. errors in variables or sector-specific shocks).
In Section 4 we will tackle this issue from an empirical viewpoint.

Notice that Condition 1 implies

β ¼ ϒqΛ
−1
q ξ; ð3Þ

where Λq is the diagonal eigenvalue matrix associated withϒq. Hence,
model (1) has the following factor structure:

ytþ1 ¼ ξ′Ft þ εtþ1;

where Ft=Λq
−1ϒ′qXt. Hence, sinceE ytþ1

� ��XtÞ is a linear transformation
of Ft, the predictable component of yt+1 is entirely captured by the q
components Ft. This is not necessarily the case in dynamic factor
models, where the idiosyncratic term is generally not an innovation.1

At the population level, PCR computes the prediction for yt+1 as
β′PCRXt where

βPCR ¼ ϒqΛq
−1ϒ′qΣxy: ð4Þ

In view of Eq. (3), it is clear under Condition 1 that we have βPCR=β.
However, in empirical applications the relevant principal components
must be selected and the eigenvalues of the sample covariance matrix
of the predictors offer no guidance on this choice. Indeed, Condition 1
does not impose that the eigenvalues associated to the eigenvectors
ϒq are the q largest ones of matrix Σxx and there is no sound theo-
retical reason why this should occur (see, inter alia, Hadi and Ling,
1998). As shown by Helland (1990), PLS offer an effective way to
overcome this problem.

PLS, introduced by Wold (1985), is an iterative procedure that
aims at maximizing the covariance between a target variable and
linear combinations of its predictors. In order to accomplish this goal,
the first PLS component ω′1Xt is built such that the weights ω1 are
equal to the covariances between the predictors Xt and the target
variable yt+1. The second PLS component ω′2Xt is similarly con-
structed using a new target variable that is obtained by removing the
linear effect of the first component on yt+1. In general, the weights of
the subsequent PLS factors are set equal to the covariances between
Xt and a novel target variable that is obtained by removing the linear
effects of all the previously obtained PLS components on yt+1. Hence,
let β′PLSXt indicate the prediction of yt+1 using the first q PLS com-
ponents, where

βPLS ≡Ωq Ω′qΣxxΩq

� �−1
Ω′qΣxy; ð5Þ

Ωq=(ω1,…,ωq), and

ωiþ1 ¼ Σxy−ΣxxΩi Ω′iΣxxΩið Þ−1Ω′iΣxy; i ¼ 1;…;N−1 ð6Þ

withω1=Σxy. Since it follows by induction from Eq. (6) thatΩq lies in
the space spanned by the eigenvectors ϒq, it is easy to see that ωi=0
for i=q+1,…,N and βPLS=β.

Further features of PLS are better understood by considering the
following equivalent way to obtain the weights Ωq (Helland, 1990).
Let us define V0, t=Xt and

Vi;t ¼ Vi−1;t−ϕi fi;t ¼ Xt−
Xi

j¼1

ϕj fj;t ; i ¼ 1;…; q; ð7Þ

whereωi¼E Vi−1;tytþ1

� �
,ϕi¼E f i;tVi−1;t

� �
=E f ′i;t f i;t

� �
, and fi, t=ω′iVi−1, t

is the i-th PLS factor.
Eq. (7) tells us that the i-th PLS factor fi, t is constructed as a linear

combination of the predictors Xt (with weights equal to elements ofωi)
after having removed the linear effects of the previously constructed
factors f1, t,… fi−1, t. Moreover, by premultiplying each side of Eq. (7) by
ω′i, we see that i-th PLS component can be rewritten as

ω′iXt ¼ f i;t þω′i
Xi−1

j¼1

ϕj fj;t :

1 This property is shared with models obtained through the reduced-rank VAR
methodology, see, inter alia, Centoni et al. (2007). However, reduced-rank regression
requires the specification of the multivariate model for series (yt,X′t) and it is not
appropriate for a medium N framework, see inter alia Cubadda and Hecq (2011).
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