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Using theoretical arguments for nonparametric wavelet estimation, we devise regression-based semipara-
metric wavelet estimators to dissect linear from nonlinear effects in a time series. The wavelet estimators
localize in both time and frequency so that distortion due to outliers is lessened. Our regression-based
approach also lends itself to ease of replication, clarity, flexibility, timeliness and statistical validity. We
demonstrate the efficacy of the approach via rolling regressions on time series of quarterly U.S. GDP growth
rates, monthly Hong Kong/ U.S. exchange rates, weekly 1-month commercial interest rates and daily returns
on the S&P 500.
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1. Introduction

The evidence as to whether there are important nonlinear
characteristics in economic timeseries is somewhatmixed. For example,
Potter (1995) and Pesaran and Potter (1997) find evidence of important
asymmetries in the responses of U.S. output to negative and positive
shocks. On the flip side, Anderson and Vahid (2001) observe that formal
tests generally fail to reject linearity in U.S. GDP, and point to the poor
forecast performance of nonlinear models. Since nonlinear models may
significantly overfit thedata, the costof using themmaybehigh in terms
of mean-absolute prediction error if the true process is linear.

In this paper we use the nonparametric Haar Wavelet Transform
(HWT) to motivate a simple semiparametric estimator. Designed by A.
Haar in 1910, the Haar basis was the first of the wavelet filters.
Nonparametric estimation with the HWT is easily accomplished
through regression analysis, and we extend the logic for the non-
parametric case to semiparametric regression. As the Haar wavelet can
be used to approximate any function in L2(R), we argue below that the
Haar father wavelet is useful in processing signals. Through thresh-
olding, we can compress the number of coefficients needed to
reproduce the important features of the signal.

We choose to use the HWT in this paper for a number of reasons.
First, it is extraordinarily simple in concept and execution. As we shall
see, however, simplicity does not necessarily imply poor performance.

Since we use a semiparametric approach for which a traditional
autoregressive process models the smooth transitions, the HWT is
employed primarily to model non-smooth regime shifts. Although we
could have employed more advanced wavelets, for our purposes the
plain vanilla Haar basis is much easier tomotivate, sufficiently flexible,
and easy to directly employ in semiparametric regression. Finally, as
with all wavelets, constructing the Haar basis follows from a well-
defined procedure, thereby removing at least some of the investigator
bias from the definitions of the step functions introduced below.

In effect, Haar scaling dummies are used to model intercept shifts.
Based on an accumulation of evidence, Clements and Hendry (1999)
assert that intercept corrections offer protection against structural
breaks in macro-econometric models. Indeed, Clements and Hendry
argue that such changes are the dominant cause of prediction failure in
linear dynamic models, with the intercept shifts due to either changes
in deterministic factors or changes in the mechanism for dynamic
adjustment. The factors that induce the structural breaks may be
institutional, political, financial or technological in nature.

The Haar scaling dummies are ideally suited for this modeling
environment since they coincide with the usual regression variables
employed to model intercept shifts. As per Härdle et al. (1998, Ch. 9),
the differentiability of an optimal father wavelet estimator should
match the assumed differentiability of the function being estimated.
In our case, the HWT is very coarse and corresponds well to the
intercept shifts that it approximates.

Wemake the assumption that our processes are stationary once the
intercept shifts are recognized andmodeled. In the case of cointegrated
variables, that is, nonstationary variables that move in tandem, the
HWT is applied to the error-correction representation. Likewise, to
model changes in the slopes, the Haar scaling dummies interacts with
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selected regression variables. To wit, the semiparametric procedure in
this paper can bemodified to suit othermodeling problems frequently
encountered in practice. Too, the procedure can be implemented using
standard statistical packages.

In this paper, we will use italics to emphasize definitions and key
points. Section II describes a multiresolution analysis that employs the
Haar wavelet coefficients, and Section III discusses thresholding the
wavelet coefficients for the purpose of parsimony. In particular, we
draw upon the results of Johnstone and Silverman (1997) to show that
the thresholding technique is appropriate for correlated data. Section
IV then extends the logic to semiparametric wavelet estimation.

The asymptotic distribution theory for our HWT estimator is
analogous to that for a series estimator. It follows that Theorem 5.2 of
Pagan and Ullah (1999) applies to the HWT estimator, along with the
results from Andrews (1994) to justify its use for time series. Section 5
then uses simulation to establish the finite-sample forecasting ability
of our proposed method. We employ quarterly U.S. GDP growth rates,
monthly Hong Kong/U.S. exchange rates, weekly 1-month commercial
interest rates and daily returns on the S&P 500 index. Section 6
concludes the paper.

2. The Haar wavelet transform

2.1. Wavelets defined

Our explanation of the Haar basis follows that of Aboufadel and
Schlicker (1999), Härdle et al. (1998), and Thullard (2001). Define:
∫= ∫−∞∞ , ∑i =∑i = 0

∞ , Z={..., −1, 0, 1,…}, and let L2(R) be the space of all real
valued functions, f, on R such that the L2-norm for f is finite:

jj f jj2 ¼ ∫ j f xð Þj2dxÞ1=2 < ∞
�

ð1Þ

A function ψ is called a wavelet if there exists some function ψc

such that any function f∈L2(R) can be written as,

f xð Þ ¼ ∑m;n < f ;ψc
m;n> ψm;n ð2Þ

where <f, g> represents the scalar product,

< f ; g >¼ ∫ f xð Þg xð Þdx ð3Þ

A function ψ∈L2(R) is called an orthogonal wavelet and the
associated system of functions {ψm,n, m,n∈Z}an orthonormals basis of
L2(R), if first,

< ψa;b ψc;d >¼ δa;c � δb;d; where δj;k is the Kronecker delta; ð4Þ

second, if every f∈L2(R) can be written as

f xð Þ ¼ ∑m;n < f ;ψm;n> ψm;n ð5Þ

and finally, if

ψm;n xð Þ ¼ 2m=2 � ψ 2m � x−n� � ð6Þ

We define the wavelet coefficients as cm,n≡<f, ψm,n> for Eq. (5) and
require that ∑m,n|cm,n|2<∞. Note that for an orthogonal wavelet, ψc=ψ.
The simplest orthogonal wavelet is the Haar wavelet, defined as,

ψ xð Þ ¼

1; x 2 0;
1
2

� �

−1; x 2 1
2
;1

� �

0; otherwise

ð7Þ

An associated wavelet is the Haar scaling function, defined as,

� xð Þ ¼ I x 2 0;1ð �ð Þ ð8Þ

where I(A)=1 if A is satisfied, and zero otherwise. With

�m;n xð Þ ¼ 2m=2 � � 2m � x−n� � ð9Þ

we can alternatively approximate any function in the space L2(R) as
a linear span of the system of functions {{ϕ0,n}, {ϕ1,n}, …}. For a
proof, see Proposition 2.1 in Härdle et al. (1998). We sometimes refer
to ϕ(x) as the Haar father wavelet and ψ(x) as the Haar mother
wavelet. We will explain the close relationship between the father
and mother wavelets later in the paper. For now we concentrate on
the father wavelet — a function useful in approximating functions in
L2(R) that can also be viewed as a step function in a regression
equation.

Consider, for example, that ϕ0,n(x)=ϕ(x−n) spans the subspace of
L2(R) defined as

V0 ¼ f2 L2 Rð Þ : f is constant on n;nþ 1ð �;n2 Zf g ð10Þ

That is, we can write any function in V0 as

f xð Þ ¼ ∑ncn� x−nð Þ ¼ ∑ncnI x−n 2 0;1ð �ð Þ ð11Þ
with the coefficients cn given by

cn ¼< f ; �0;n >¼ ∫ f xð ÞI x−n 2 0;1ð �ð Þdx ð12Þ

Likewise, ϕ1,n(x)=√2 ϕ(2x−n) spans the subspace of L2(R) defined
as

V1 ¼ f 2 L2 Rð Þ : f is contant on n=2; nþ 1ð Þ=2ð Þ;n 2 Zf g ð13Þ

We can write,

V1 ¼ h xð Þ ¼ f 2xð Þ : f 2 V0f g ð14Þ

In fact, {ϕ0,n} forms an orthonormal basis for V0 and {ϕ1,n} forms
an orthonormal basis for V1. Too, V0⊂V1, in that V0 is a linear
subspace of V1 since V1 simply considers piecewise constants on a
finer grid than V0. In general, ϕm,n(x)=2m / 2 ϕ(2mx−n) forms an
orthonormal basis for

Vm ¼ h xð Þ ¼ f 2mx
� �

: f 2 V0
� � ð15Þ

with

V0oV1o N o N Vmo N ð16Þ

By choosing a sufficiently large value of m, any function f∈L2(R)
can be approximated as closely as we like by a piecewise constant
functionwith constant values over the interval (n /2m, (n+1)/2m]. The
approximation error is measured by the L2(R) norm:

d f ; gð Þ ¼ jjf−gjj ¼ ∫ f ðtð Þ−gðtÞ½ �2dt
� 	1=2

ð17Þ

where for our immediate purposes f(x) is approximated by g(x), the
wavelet expansion. Choosing a small value of m reveals only the most
salient features of f(x), while choosing a large value of m will also
reveal the details. We say that the sequence of spaces {Vm, m∈Z)
generated by the Haar orthonormal system of scaling functions is a
multiresolution analysis because Vm −1⊂Vm and Um ≥0 Vm is dense in
L2(R).

2.2. Signal processing

In economics we are frequently interested in observing some
phenomenon measured at regular intervals over time. Examples of
macroeconomic time series are national unemployment, the current
account deficit, aggregate inventory levels and gross domestic
product. The process of gathering data at these regular intervals
allows us to form a string of numbers called a signal. The signal can
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