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In this work we provide an up-to-date short review of computational magnetic resonance imaging (MRI)

and software tools that are widely used to process and analyze diffusion-weighted MRI data. A review of

different methods used to acquire, model and analyze diffusion-weighted imaging data (DWI) is first

provided with focus on diffusion tensor imaging (DTI). The major preprocessing, processing and post-

processing procedures applied to DTI data are discussed. A list of freely available software packages to

analyze diffusion MRI data is also provided.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Whereas conventional magnetic resonance imaging (cMRI)
provides methods to map the anatomy or tissue volume, diffu-
sion-weighted imaging (DWI) of random translational water
molecules offers quantitative anisotropy and orientation informa-
tion that has been utilized to map the integrity or architecture of
the soft tissue in the central nervous system [1–6]. Contributors to
diffusion tensor anisotropy include cellular membranes, axons,
myelin sheaths, and other factors [7]. Water molecular diffusion in
cerebral white matter is less restricted along the axon than it is
when perpendicular to the compact bundles and hence it is termed
anisotropic (see Fig. 1). Gray matter is less anisotropic, while
diffusion in barrier free tissue (e.g. edema and cerebrospinal fluid)
is isotropic [8–10].

2. Mathematical background

In general, DWI data are acquired on a prescribed volume (e.g.
brain) by repeating the acquisition while altering the magnitude or
orientation of the diffusion-sensitizing gradients. Hence, the DWI
data acquired are generally multidimensional and can always be
pooled as 4D data (e.g. in space x, y, z and diffusion encoding).
Diffusion-weighted data are occasionally repeated in time and are
magnitude-averaged to enhance the signal-to-noise ratio (SNR).
This data averaging can be done by the scanner software. Depending
on the acquisition protocol, the DWI data may undergo model-based
single or multiple diffusion tensor imaging (DTI) or model-free
analysis to obtain scalar and vector metrics that can be used to
map the tissue connectivity [11–13]. Currently, there are three
diffusion MRI books [11–13] and several reviews on diffusion MRI
[3–6,14–19]. The sections below provide a short overview of the
basics of diffusion MRI applied to whole brain human brain mapping
in health and disease.
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2.1. Model-based diffusion tensor imaging

Mathematically, the kth signal Sk obtained from a volume
element upon applying a diffusion-weighting or b-factor bk along
the unit vector gk can be modeled using the Gaussian mixture
model (GMM) [5] as the superposition of different slowly exchan-
ging positive-definite and symmetric tensors Dn, each with a
population fraction fn:

Sk ¼ S0

XN

n ¼ 1

fn expð�bkĝkDnĝkÞþZk ð1Þ

where Dn refers to a second rank and positive-definite tensor
with three unique diagonal and three unique off-diagonal elements,
which can be represented by a 3�3 symmetric matrix [1–3,11–13]:
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In Eq. (1), S0 refers to the reference signal obtained without diffusion-
sensitization (e.g. b¼0). The sum of all population fractions is unity:

XN

n ¼ 1

fn ¼ 1 ð3Þ

In Eq. (1), the apparent diffusion coefficient (ADC) can be defined as

ADCkðĝk,bkÞ ¼�
1

bk
log

Sk

S0

� �
ð4Þ

The system of equations described in Eq. (1) can be expressed as
a matrix equation after defining yk¼Sk/S0:

yK�1 ¼ AK�NfN�1þ Ẑk ð5Þ

This system of equations obtained from all measurements can be
solved using constrained or regularized non-linear least-squares fit
methods for the unknown diffusivities for the fractions [20–27]; this
analysis is the basis for single or multiple diffusion tensor imaging
(DTI). For a system with a single unknown tensor (N¼1), Eq. (1) can be
simplified by taking the logarithm to obtain a linear system of
equations:

ADCk ¼ ĝkDĝk ¼Dxxg2
x þDyyg2

y þDzzg2
z þ2Dxygxgyþ2Dxzgxgzþ2Dyzgygz

ð6aÞ

This equation can also be written as

ADCk ¼
Xi ¼ 3

i ¼ 1

Xj ¼ 3

j ¼ 1

gkðiÞgkðjÞDij ð6bÞ

A generalization of this equation assumes the presence of high
order tensors (HOT) and forms the basis of generalized DTI [28–30].
To solve this linear system of equations for the 6 diffusion tensor
elements, a minimum of six independent diffusion-weighted
measurements are needed in addition to the reference map (S0).
In general, more than seven measurements are acquired with
different diffusion b-factors and non-collinear orientations. Exam-
ples of non-collinear or uniformly distributed diffusion encoding
sets are provided in Fig. 2.

The over-determined system described by Eq. (6) can be solved
by least-squares and singular value decomposition (SVD) methods
[28–30].

In the case where a single-b-factor is selected based on some
known range of ADC, the orientations of the encoding vectors have
to be uniformly distributed in three-dimensional space [31–43].
The optimization of diffusion encoding schemes for white matter
fibers with selected orientations, such as skeletal muscle or spinal
cord, has been discussed by Peng and Arfanakis [44]. In the case
where non-zero b-factors are acquired along with at least 15
encoding measurements for each b-factor, diffusion kurtosis imag-
ing (DKI) methods may be used [45,46]. Additional data-driven
methods such as principal component analysis (PCA) or indepen-
dent component analysis (ICA) may use the moments of the
measured data [47–50].

In the general case where N diffusion tensors with rank two are
sought, 6N variables need to be determined in addition to N�1
unknown population fractions subject to Eq. (3) or a total of 6
N+(N�1) unknowns.

Analysis of diffusion-weighted data acquired at finite SNR,
angular and spatial resolutions according to the multi-tensor model
may lead generally to unstable results as the exact number (N),
population fractions (f), diffusion tensor orientation, and magnitude
are unknown. The two-tensor case has received some attention as it
appeals to the determination of the extent of fast and slow diffusion
compartments in a voxel [51–53] or the interesting case of enclosed
or intravoxel crossing fibers [54–57]. The fast and slow diffusion
tensor decoupling requires diffusion measurements with different
b-factors (e.g. b¼1000 and 4000 s mm�2), while the case of multiple
crossing fibers was modeled with uniformly distributed orientations
at clinically attainable b-factors (e.g. b�1000 s mm�2). In general,
the two-tensor modeling problem can be solved if sufficient data are
acquired at acceptable SNR using non-linear fitting approaches or
can be regularized to reduce the number of unknowns by assuming a
cylindrical symmetry of the unknown fibers [20–27].

2.2. Model-free approaches

Data-driven or model-free approaches may require longer
acquisition times and the diffusion-weighted data have to be
acquired according to prescribed paradigms [13]. Data-driven
approaches with high angular resolution diffusion (HARDI) mea-
surements with two b-factors may use spherical harmonic decom-
position (SHD) [58–63] that is based on the expansion of the
measured apparent diffusion coefficient data in terms of a complete
orthonormal set (e.g. spherical Legendre polynomials Yl

m). Math-
ematically, this can be expressed as

ADCðy,jÞ ¼
X1
l ¼ 0

Xm ¼ l

m ¼ �l

almYl
m
ðy,jÞ ð7Þ

It has been shown that single fibers correspond to l¼0, 2 and
two fibers may be represented by l¼0, 2, 4, while acquisition

Fig. 1. Illustration of diffusion anisotropy using the ellipsoid representation of the

single tensor model.
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