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1. Introduction

During the past several years a variety of methods have been developed to estimate the effective
connectivity of neural networks from measurements of brain activity in an attempt to study causal
interactions among distinct brain areas. Understanding the relative strengths and weaknesses of these
methods, the assumptions they rely on, the accuracy they provide, and the computation time they
require is of paramount importance in selecting the optimal method for a particular experimental task
and for interpreting the results obtained. In this paper, the accuracy of the six most commonly used
techniques for calculating effective connectivity are compared, namely directed transfer function,
partial directed coherence, squared partial directed coherence, full frequency directed transfer function,
direct directed transfer function, and Granger causality. These measures are derived from the
coefficients and error terms of autoregressive models calculated using the dynamic autoregressive
neuromagnetic causal imaging (DANCI) algorithm. These techniques were evaluated using magne-
toencephalography recordings as well as several synthetic datasets that simulate neurophysiological
signals, which varied on several parameters, including network size, signal-to-noise ratio, and network
complexity, etc. The results show that Granger causality is the most accurate method across all
experimental conditions explored and suggest that large multisensor data sets can be accurately
analyzed using Granger causality with the DANCI algorithm.

© 2011 Published by Elsevier Ltd.

can quantify causal relationships in neurophysiological neural
networks [7-11].

A number of recent neuroimaging studies have focused on the
importance of brain connectivity across small- and large-scale
neural networks [1-6]. Several methods are used to study brain
connectivity. Anatomic connectivity is most commonly studied
using diffusion tensor imaging (DTI) while functional connectivity
is most commonly studied by analyzing functional brain activity
derived from functional neuroimaging techniques such as func-
tional magnetic resonance imaging (fMRI) or magnetoencephalo-
graph (MEG) [7-22]. These studies can provide insight into the
relationships between brain structure and function. More
recently, effective connectivity methods have been developed that
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In any complex (neural) network, nodes (sources of activity)
can be connected through direct or indirect connections, and such
networks can be analyzed by considering the interaction between
nodes. Some techniques only consider the interactions between
two nodes at a time while other techniques can consider the
interactions between more than two nodes simultaneously and
even between all of the nodes simultaneously. Fig. 1 shows a
three nodes network. Node 1 has a direct causal influence on node
2 and node 2 has a direct causal influence on node 3 (direct
connections shown by solid arrows). However, at the same time,
node 1 has an indirect influence on node 3 via node 2 (indirect
connections shown by a dashed arrow). Indirect connections
become a problem in pair-wise analysis (i.e.,, when only two
nodes are considered simultaneously) [11], especially with larger
networks. The analysis of larger networks with many indirect
connections requires multivariate methods that account for the
influence of all sources simultaneously.
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Fig. 1. Three-node network. Channel 1, 2, and 3 are interacting with each other in
a network. Channel 1 has a causal direct influence on 2 and channel 2 has a causal
direct influence on 3, shown by solid arrows. Channel 1 has an indirect influence
on 3 via 2, as shown by a dashed arrow.

In general, there are three main classes of multivariate
measures to estimate causal connectivity: the direct transfer
function (DTF) and its derivatives, partial directed coherence
(PDC) and its derivatives, and Granger causality. Autoregressive
modeling is the basic framework for calculating multivariate
causality. Linear autoregressive modeling has considerable
flexibility and can model interactions within and between multiple
sources simultaneously. The DTF, PDC, and their derivatives are
based on the coefficients of linear autoregressive (AR) models of the
recorded signals, while Granger causality is based on the error of the
AR model. Which of these measures is the most advantageous and
accurate is still an open question.

The DTF was defined by Kaminski and Blinowska [12,13] and
was designed to measure directional information flow. DTF is
calculated as the ratio between the inflow into a particular node
and all nodes connected to the particular node. DTF is capable of
finding the connections in a multivariate system of interacting
signals by considering all signals simultaneously. As such, this
method was the first multivariate approach used to assess
causality in neural signals. However, this method is not able to
distinguish between direct and indirect connections. DTF has
several derivatives, including the full frequency DTF (ffDTF),
which was defined by Korzeniewska [14] and is derived by
integrating over a wide frequency spectrum to account for all
connections over all frequency bands.

PDC was defined by Baccala and Sameshima [15,16] and
represents the ratio between the outflow from one particular
node and all nodes to which the particular node is connected.
Since PDC does not use a transfer function, this method is able to
disentangle direct and indirect connections [17,18]. Square partial
directed coherence (sPDC) was introduced by Astolfi [19] and is
derived from PDC by squaring the frequency dependent coeffi-
cients. Thus, sPDC emphasizes the strongest outflow connection
and better differentiates between nodes with lower and higher
outflow connectivity, thus increasing the sensitivity of the
measure.

The direct DTF (dDTF) proposed by Korzeniewska [14] is
derived from the PDC and DTF by multiplying ffDTF by PDC and
combines the strengths of both measures. dDTF can determine
whether a connection between two nodes is mediated by a third
one (i.e., indirect connection) and the directionality of the
connection.

Finally, Granger causality (GC) is based on the relative change
in the AR model error when a new signal is added to improve the
prediction of a modeled signal [20]. The GC method is designed to
consider interactions among multiple sources simultaneously,
thereby providing a true measure of causal connectivity between
two sources, while allowing the indirect influence of other
sources on the relationship to be taken into account.

Understanding the relative strengths and weaknesses of these
methods, the assumptions they rely on, the accuracy they
provide, and the computation time they require is of paramount
importance in selecting the optimal method for a particular

experimental task and for interpreting the results obtained. In
this paper, the six most widely used techniques found in the
literature are compared, namely DTF, ffDTF, PDC, sPDC, dDTF and
GC. The coefficients and model error are derived using the
Dynamic Autoregressive Neuromagnetic Causal Imaging (DANCI)
algorithm [20,21,22]. The simulated data are used to compare the
accuracy of the measures across a wide range of network
architectures, AR model orders, network complexity, and signal-
to-noise ratios. In these simulations, extra indirect connections
between channels were added to increase the complexity of
the networks. Those indirect connections between nodes cause
partial influence between nodes and make it more difficult to
estimate the true effective connectivity. We then compared the
six methods described above using clinical MEG data obtained
during a reading experimental task.

2. Methods
2.1. Data preprocessing

Stationary data are required for accurate AR modeling. If the
data are not stationary, the multivariate AR models will be invalid
and may contain ‘spurious regression’ results [23]. To prevent
non-stationarity the data are normalized both within and across
data epochs [20]. Stationarity is verified by examining the unit
roots using the Dickey-Fuller unit root test (see Fig. 2A).

2.2. Linear autoregressive modeling

An AR process can be defined for any time series
X{x(1), ..., x(t)}, so that x(t) can be predicted by the values of
the signal at some past times as follows:

p
X(O) =D AyX(t=])+ e x(D) (1)

i=1

where ay, j=1, ..., p are the AR coefficients, p is the model order
that determines the number of previous time points to be
considered, and eyx(t) is the error term, i.e., the portion of the
signal x(t) at time t, which is not accounted for by the previous
values of x(t—1), ..., x(t—p).

The time series x(t) can also be predicted by combining its own
past activity with past values of another signal, as follows:

p p
X(O) =D GX(t—)+ > Qy(t—i)+exxy(t) )
j=1 j=1

In Eq. (2) signal x(t) at time t is predicted by the previous
activity of both x(t—1),...,x(t—p) and y(t—1), ..., y(t—p), and
e(x|xy)(t) represents the error in predicting x(t) given the previous
values of x(t—1), ..., x(t—p) and y(t—1), ..., y(t—p).

2.3. Least-squares linear regression

The causal connectivity measures described below are derived
from the coefficients and error terms of AR models calculated
using the DANCI algorithm. The DANCI algorithm uses least-
squares linear regression to calculate the AR coefficients for
multiple sources, as described in detailed elsewhere [24]
(Fig. 2B). In a companion paper within this issue, we demonstrate
that DANCI provides a fast, accurate, unbiased, and robust
estimation of Granger causality [24].

Directed Transfer Function (DTF) [12] relies on AR modeling, but
the signal is transformed to the frequency domain to estimate the
spectral properties of the process. The multivariate AR model of
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