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a b s t r a c t

Estimation of effective connectivity, a measure of the influence among brain regions, can potentially

reveal valuable information about organization of brain networks. Effective connectivity is usually

evaluated from the functional data of a single modality. In this paper we show why that may lead to

incorrect conclusions about effective connectivity. In this paper we use Bayesian networks to estimate

connectivity on two different modalities. We analyze structures of estimated effective connectivity

networks using aggregate statistics from the field of complex networks. Our study is conducted on

functional MRI and magnetoencephalography data collected from the same subjects under identical

paradigms. Results showed some similarities but also revealed some striking differences in the

conclusions one would make on the fMRI data compared with the MEG data and are strongly

supportive of the use of multiple modalities in order to gain a more complete picture of how the

brain is organized given the limited information one modality is able to provide.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The morphology and connectivity of neurons define the func-
tional properties of the brain. A combination of short-, mid- and
long-range interactions among neurons forms multiscale net-
works that give rise to high level cognitive functions [1,2].

Anatomical neuronal connections are extensively studied at all
scales of brain’s interaction network. Initially, in vitro studies
provided the most of the information. Subsequent advent of
noninvasive imaging methods, such as DTI [3], led to an explosion
of the number of in vivo connectivity studies [4,5] and equipped
large mapping efforts, such as the human connectome project [6],
with essential tools.

Noninvasive studies of mid- and long-range connections as well
as invasive studies of dendritic connections provide information
about structural networks in the brain. These connections form a
‘‘supporting fabric’’ for dynamically changing processing networks.
Interaction within and among these changing function-induced
networks also supports high level cognitive processing. Some of

these network-circuits are surprisingly stable under equivalent
conditions in single-subject as well as in group studies [7,8].

Functional neuroimaging provides a way to look at these
networks by tracking different aspects of dynamical brain beha-
vior [9–11]. Among many currently used functional modalities we
have focused this study on magnetoencephalography (MEG) and
functional magnetic resonance imaging (fMRI). The main advan-
tages of functional neuroimaging in general and of the two
selected modalities are in providing spatio-temporal data. These
data inform us of brain dynamics at different regions and with
different spatio-temporal resolutions.

Among available approaches to extracting neuronal function-
induced networks, we are interested in those that result in a
graphical model representing regions of interest (ROI) as graph
vertices and their connections as edges [12]. A widely accepted
approach to extracting such models from functional data involves
obtaining a correlation (mutual information, spectral coherence
or others) matrix, thresholding its values and using the result as
the adjacency matrix of the graph representing the data. This
approach only extracts the second order pairwise interactions or
functional connectivity, whereas causal relationships involving
groups of ROIs acting together (effective connectivity) require
more involved approaches [13].

The definition of effective connectivity usually involves extrac-
tion of causal relationships among ROIs as well as going beyond
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second order measures to multiple potentially nonlinear interac-
tions. Causality in its strong sense is a difficult concept to handle
and it often requires intervention analysis for estimation [14].
However, it is possible to estimate graphical models having causal
interpretations from data and prior knowledge [15] or to resort to
a specific definition of causality [16,17]. Multiway interactions
with a possible causal interpretation are also modeled by Baye-
sian networks (BN) developed specifically for reasoning about
effective connectivity in the field of artificial intelligence [18,19].

The more traditional approaches to effective connectivity
estimation in neuroimaging such as dynamic causal modeling
[15] have their limitations restricting interactions among vari-
ables to bilinear, and posing difficulties for full brain graphical
model structure estimation. In this paper we use Bayesian net-
works with multinomial random variables as our model of
effective connectivity and a structure learning algorithm to
recover the graphical model from the data. Recent developments
in structure learning algorithms [20] allow us to estimate struc-
tures of networks covering all cortical ROIs.

Estimated effective connectivity can be used to compare the
groups of subjects (such as patients and controls) or/and to make
conclusions about interactions among ROIs [21,22]. In the latter
case we feel that a special care should be taken to attribute the
result to the modality that was used to obtain effective connec-
tivity. Although in essence all neuroimaging modalities with
timeseries information measure neuronal activity and connectiv-
ity at their core, the degradation of such signals through e.g. the
neurovascular transformation in fMRI and volume conduction/
mixing in EEG/MEG before detection at the sensors does heavily
influence the result. The combination of imaging modalities
provides a way to maximize neuronal information although it
remains unclear in which way connectivity from multimodal
signals should be estimated in an optimal fashion. In order to
test this problem, in this work we have estimated effective
connectivity from two modalities (MEG and fMRI) of the same
subjects performing the same task in MEG and in fMRI collected
on separate occasions in a Bayesian network approach. Thus, we
attempt to eliminate all differences but functional modality in
these datasets. Then we compare the results for MEG and fMRI.

The rest of the paper is structured as follows. Section 2
describes details of Bayesian network modeling and the structure
search algorithm as an approach to effective connectivity estima-
tion as well as the data collection. Section 3 gives details of our
data processing and application to each modality, and then covers
the results of the structure search obtained in this study. We
discuss consequences of our findings together with their inter-
pretation in relation to the current literature in Section 4.

2. Methodology

The goal of our work is to study how the choice of a functional
modality may affect the conclusions of an effective connectivity
study. In the following, we describe the method of Bayesian

network structure search used to estimate the connectivity, the
metrics originating in the graph community structure research for
characterizing graph structure properties, and the MEG and fMRI
modalities we apply our comparison to. An overview of how we
use the methods and process the data is shown in Fig. 1

2.1. Bayesian networks

Bayesian networks [14,19,23] can be viewed as a way to
compactly represent a joint probability distribution by encoding
the conditional independence structure of its random variables.
This is done through two parts: a directed graph G, and para-
meters y of conditional densities. Since all information about a set
of random variables and their interactions are encoded in the
joint probability density, being able to estimate and reason about
it provides a way to understand complex structured data. The
joint probability density of a given set of n random variables
X¼ fX1,X2, . . .Xng in the Bayesian network representation is
expressed as

PyðXÞ ¼
Yn

i ¼ 1

PðXijPaðXiÞ; yÞ ð1Þ

where Pað�Þ denotes the parent set of the argument in the
corresponding graph structure G of the BN. Compactness is
achieved due to the significant decrease in the number of
parameters, y, required to describe random variable values in
conditional densities compared to every possible combination of
values for all random variables of the joint density. This, however,
is a consequence of the graphical representation, G.

The BN graphical representation G is a directed acyclic graph
(DAG) with random variables at nodes and directed edges con-
necting them according to the independence structure (Fig. 2a). A
random variable is called a parent if it has outgoing graph edges
pointing to other nodes of the graph. A random variable with
incident edges is called a child. The key property of a BN that gives
it an advantage over the functional connectivity approaches is
that every variable is conditionally independent of its non-
descendants given its parents. This property and the factored
form of the joint distribution (1) leads to special importance of a
graphical unit called a family: a child node plus its parents
(Fig. 2b).

While in functional connectivity studies, the fundamental unit
is a pair of ROIs connected by an edge, in effective connectivity
analysis the fundamental unit is an entire family. Since it may
simultaneously involve several parents and a child, the interac-
tions it is modeling are of higher order than in the pairwise
model. Fig. 2c shows an example of modeling higher order
nonlinear interactions in the family of three ROIs.

The data arriving from functional measurements is, by nature,
continuous: magnetic field and hemodynamic activity are real
valued despite being sampled at discrete intervals. Unfortunately,
the approaches to treat it in the context of Bayesian networks are
either not well developed or limited. In this paper we employ the
quantized representation. In terms of generality of relationships a

Fig. 1. A cartoon of processing and analysis steps performed in the paper.
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