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Fast contouring is important in image-guided radiation therapy (IGRT) and adaptive radiation therapy
(ART) where large computed tomography (CT) volumes have to be segmented. In this study, a modified
active contour (also called snake) segmentation method based on a faster gradient-vector-flow (GVF)
calculation algorithm is proposed. The accelerated method was tested on multiple organs, including lung,
right ventricle, kidney and prostate. Compared to the original algorithm, the improved one reduced GVF
calculation times to one-half or less without compromising contour accuracy.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Computed tomography (CT), magnetic resonance imaging (MRI)
and other volume imaging modalities are part of modern radiother-
apy. By identifying target tissues and avoidance structures, treat-
ments can be tailored to maximize tumor doses while keeping doses
to critical structures low, to preferentially kill tumor cells in the
target while minimizing damage to normal surrounding structures.
Adaptive radiotherapy (ART) involves frequent imaging throughout
the course of radiotherapy to take changes of anatomy into account.
Image guided radiation therapy (IGRT) requires imaging immediately
before treatment so that shifts of internal structures can be com-
pensated for by appropriate shifts of the patient. In all cases, target
volumes and critical structures have to be identified. Manual con-
touring is very tedious, especially in ART and IGRT where repeated
imaging is required. In IGRT, a short contouring time is critical to
prevent patient motion between imaging and treatment.

To reduce labor and expedite contouring, numerous automatic
techniques have been suggested. Ukil and Reinhardt [1] proposed a
fully automatic method for three-dimensional (3D) smoothing of the
lung boundary using information from the segmented human airway
tree. Ragan [2] adopted a commercial prototype deformable model
to semi-automatically contour 4D CT image volumes from eight
phases in the respiratory cycle. Burnett [3] developed a deformable-
template algorithm to segment the spinal canal which was mod-
eled using Fourier descriptors derived from four sets of manually
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drawn contours. Atlas-based and model-based [4-13] segmentation
methods have been widely used for segmenting multiple organs.

A semi-automatic image segmentation algorithm based on active
contour (snake) was first proposed by Kass [14] in 1987, and suc-
cessfully applied in many image processing applications. Since then,
several variations have been suggested. The GVF-based snake algo-
rithm was proposed in 1997 by Xu and Prince [15]. Unlike the tra-
ditional external forces, GVF forces have a relative large capturing
range and can accommodate small concavities, an essential feature
in medical applications. However, the relatively long time required
to calculate the GVF is a shortcoming of this algorithm. To shorten
calculation times, we propose an accelerated variation based on the
original algorithm introduced by Xu and Prince. Its performance was
tested on clinical examples and compared to the original one.

2. Method and materials

The GVF-based snake model dynamically changes the shape of an
initial curve in response to internal (elastic) and external (image and
constraint) forces. The internal forces originate from the curve itself,
usually from its first and second derivatives as tension and rigidity
terms that resist stretching and bending. The GVF, being the external
force derived from images, moves the contour toward regions of high
gradients.

In a typical snake model, the energy function E to be minimized
is defined as
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where C(s) is the snake curve and C'(s) and C”(s) are the first and
second derivatives of C(s) with respect to s € [0,1]. The first two
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items are internal forces from the curve itself. The parameters o
controls the tension of the curve, while  controls its rigidity. The
external energy function Egy is derived from image features like
object boundaries.

The minimization of E in (1) must satisfy the Euler equation

aC’(s) — PC"(S) — VEext =0 (2)

In the GVF snake model [6], the gradient of Eex;(VEex:) is the
gradient vector field,

VEext(x,y) = =V(x,y) = —[u(x,y), v(x,y)] (3)

The GVF vector V(x,y) is obtained through the minimization of
the energy ¢,

£=//u(u,2(+u§+v,2<+v}2,)+|vf|2|vaf|2dxdy (4)

where f(x,y) is an edge map. It is defined on the image as

f(x,y) = =IVIGo(x,y) % 1(x,y)]? (5)

where G4(x,y) is a two-dimensional (2D) Gaussian function with
standard deviation ¢ and I(x,y) is the image intensity.

For discrete problems like image processing, a numerical imple-
mentation for finding V(x,y) has been described by Xu and Prince
[6]. Being an iterative process involving the entire 2D image matrix,
the search for V(x,y) is quite time consuming, even when performed
on a modern high speed computer.

To speed up that search, we have added the acceleration terms
e MMNo(uP. — ufdfl) and Ce="No(v — v?JT]) to the equations for the
GVF vector field components, so that they become
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where biJ-,c}J,cizj and v are defined and calculated as described in
[16]. ¢ is a scaling constant, Ng is the maximum iteration number
and At is the time step, equal to unity in this case. The acceleration
terms are relatively large at the beginning of the search to speed up
convergence and, to avoid oscillation, become smaller as the num-
ber of iterations increases. The search for the GVF is terminated after
a predetermined number of iterations or when the convergence pa-
rameter p has reached a preset value. The convergence parameter
p is defined as the largest change between consecutive iterations of
the absolute value of any of the gradient vectors V(x;,y;), i.e.,
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A large value of p indicates that the optimal GVF has not yet been
found, whereas a small value of p suggests that the search is converg-
ing and only marginal improvement can be achieved by additional
iterations. In a clinical application, a compromise has to be made
between the conflicting requirements of short calculation times and
accuracy.

After the GVF vector V(x,y) has been computed using the accel-
erated algorithm, Eq. (2) can be written in discretized form

Ci(s, ) = aC(s,£) — BC"(s, ) + V (8)

It is solved by an iterative method similar to the equation con-
taining the GVF field obtained by the original search algorithm. The

search for the optimized contour is terminated when image entropy
of the segmented region, defined as

N
H=-Y "p;=logp; 9)
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changes between consecutive iterations by less than a preset
small value. In Eq. (9), N is the number of pixel bins in the search re-
gion and p; is the fraction of pixels contained in the ith bin. We used
in our study 256 bins of equal width, covering the range between the
smallest and the largest CT numbers encountered in the segmented
region. The highest acceptable change in entropy between consecu-
tive iterations was chosen as 10-3. We chose such a small number to
assure an optimal fit of the contour. Considering the relatively short
times required for computing the contour, potential time savings by
accepting a larger entropy would have been insignificant.

To evaluate the performance of the accelerated GVF search algo-
rithm, we compared snakes derived from the accelerated GVF to the
“Gold Standard” (GS). The GS is defined as the snake obtained from
the original GVF search algorithm after a very large number of iter-
ations (2000). The comparison was done using an overlap factor OF,
defined as

AAccel n AGold
OF = “Accel_ "Gold (10)
AAccel U AGold

where Ax is the area enclosed by the contour resulting from the
GVF derived from the accelerated algorithm, and Ag,y is the area
enclosed by the GS. With this definition, OF =1 is indicative of a
perfect match between the two contours, whereas OF =0 would
indicate absence of any overlap.

3. Results

Fig. 1 shows the effect of the GVF convergence parameter p on
the quality of segmenting. A value of p = 10~2 results in a contour
that misses in many places the outline of the lung (b). A decrease
of p to 103 yields an accurate lung contour (d), whereas a further
decrease to 10~ yields an improved GVF (e) but fails to substan-
tially improve the contour (f). An illustration of the rapid conver-
gence of the accelerated algorithm in comparison with the original
one is shown in Fig. 2. Starting from an initial hand-drawn con-
tour, the accelerated algorithm achieved a convergence parameter
of 10-3 after 44 iterations and 1s computation time (c), yielding a
contour that accurately follows the lung outline (d). After perform-
ing the same number of iterations, the original algorithm yielded a
vector field with convergence parameter 1.62x103 (a). The contour
resulting from that vector field failed to follow the intricate outline
of the lung in its 3-o0’clock position (b). It took the original algorithm
74 iterations to achieve the convergence of 10~3 (e), which resulted
in an acceptable contour (f).

To test the clinical performance of the algorithm, lung, right ven-
tricle, kidney and prostate were segmented. In each case, the origi-
nal and the accelerated algorithms were used to obtain GVFs having
equal convergence parameters. The number of iterations and times
required for convergences of 10~3 and 10~* are summarized in
Table 1. The results apply to contours on a single 512x512 pixel slice,
calculated with a Pentium 4 desktop computer operating at 3.20 GHz
CPU clock speed. For all organs, the acceleration terms used the pa-
rameters ¢ = 0.8, Ng = 80 and Ny = 300 for convergence to 103 and
104, respectively. A quantitative evaluation of the accelerated algo-
rithm is shown in the last two columns of Table 1.

Respiratory gating requires a minimum of two CT scans to deter-
mine the extent of tumor motion, one at the end of inspiration and
the other at the end of expiration. Because of the large number of
images, any automation is welcome. In the example shown in Fig. 3,
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