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a b s t r a c t

In this paper, we present a novel active contour (AC) model for medical image segmentation that is

based on a convex combination of two energy functionals to both minimize the inhomogeneity within

an object and maximize the distance between the object and the background. This combination is

necessary because objects in medical images, e.g., bones, are usually highly inhomogeneous while

distinct organs should generate distinct image configurations. Compared with the conventional

Chan–Vese AC, the proposed model yields similar performance in a set of CT images but performs

better in an MRI data set, which is generally in lower contrast.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Medical image analysis has played a more and more important
role in many clinical procedures due to the advancements in
medical imaging modalities such as computed tomography (CT),
magnetic resonance imaging (MRI), and ultrasound [1]. Medical
image analysis deals with enhancement, segmentation, registra-
tion, and visualization, among which segmentation is a very
crucial task because it provides the organ of interest, such as
bone [2,3], brain [4], or heart [5], that is necessary for clinical
diagnosis and/or treatment [6]. Image segmentation is to partition
the image into its constituent parts which correspond to sepa-
rated objects. One then may think of the extraction of object
boundaries, where simple edge detectors like the gradient-based
and the second-order derivative-based operators [7] or a more
elaborated approach like Canny edge detector [8] are widely used.
However, an edge detector is usually not suitable for extracting
object boundaries due to many reasons. Firstly, extracted edges
do not always correspond to object boundaries. For example, one
may think of texture. Secondly, edge detectors usually yield
discontinued edges, whereas objects are necessarily separated
by closed contours. So post-processing tasks are needed to link
discontinued edges, which are complex and prone to be erro-
neous. Finally, edge detectors depend on the local information in
a neighborhood of a pixel. Being local is sometimes advantageous,
yet in many cases, the global view of the object appearance is
of significant clues. Therefore, image segmentation in general is

different from edge detection. The former is to provide regions,
represented by closed boundaries, not edges.

Region growing [7,9] is one of the simple techniques that
provide regions. Starting with a set of seed points, the algorithm
successively appends to each seed point its neighboring pixels
that share similar image features such as intensity, texture, or
color to form larger regions. This is an iterative process that stops
when all pixels are processed. The algorithm can be regarded as
a heuristic minimization for the Mumford-Shah functional [10]
where the energy decreases while the regions are growing.
Therefore, just like its energy optimization counterpart, region
growing suffers from the sensitivity to seed selection as the initial
condition, which can lead to under- or over-growing.

Another region-providing method is snake or active contour (AC).
An AC model is the description of contours in 2D or surfaces in 3D
which evolve under an appropriate energy to move toward desired
features, such as object boundaries. Because contours are always
closed, object boundaries extracted are continuous, making post-
processing tasks to connect discontinued edges no longer necessary.
Since it was first introduced by Kass, Witkin, and Terzopoulos [11],
active contour has attracted a large amount of researches: many AC
models have been proposed, which can be categorized into para-
metric-type and geometric-type ACs. In parametric ACs [11–15], the
curve (contour) C is explicitly represented using its parameteriza-
tion: C(p) ¼ [x(p), y(p)], where pð0rpr1Þ parameterizes the curve.
This makes the parametric ACs non-intrinsic because their energy
functional depends on the parameterizations but not on the geo-
metry of the contour. As a result, these models cannot naturally
handle topological changes to simultaneously detect multiple objects.
Many special (usually heuristic) procedures have been proposed in
detecting possible splitting and merging [16–18] but prior knowledge
about the number of objects needs to be given.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cbm

Computers in Biology and Medicine

0010-4825/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compbiomed.2011.03.006

� Corresponding author. Fax: þ82 31 202 2520.

E-mail address: yklee@khu.ac.kr (Y.-K. Lee).

URL: http://uclab.khu.ac.kr (Y.-K. Lee).

Computers in Biology and Medicine 41 (2011) 292–301

www.elsevier.com/locate/cbm
dx.doi.org/10.1016/j.compbiomed.2011.03.006
mailto:yklee@khu.ac.kr
mailto:http://uclab.khu.ac.kr
dx.doi.org/10.1016/j.compbiomed.2011.03.006


Geometric-type ACs [19–24], on the other hand, can handle
topological changes without additional efforts because they are
implemented using level-set framework [25,26]. In this frame-
work, the curve C is implicitly represented by the zero level set of
a function fðx,tÞ : Rn

� ½0,1Þ-R, n ¼ {2, 3} such that

C ¼ fxARn : fðx,tÞ ¼ 0g: ð1Þ

The function f is then evolved using the following general
equation

@f
@t
¼ bkjrfj|fflfflfflffl{zfflfflfflffl}

Curvature Based

þ VNjrfj|fflfflfflffl{zfflfflfflffl}
Normal Direction

þ ~S � rf|fflfflffl{zfflfflffl}
Vector Field Based

, ð2Þ

where k is the Euclidean curvature and (b, VN, and ~S) are three
parameters determining the velocity and direction of the evolu-
tion. The curvature-based force is to smooth the curve; the
normal direction force shrinks or expands the curve along its
normal direction; and the external vector field-based force acts as
a translation operator. Although the function f itself moves up
and down on a fixed coordinate system without changing its
topology, its zero level set (or the curve C) may automatically split
or merge.

The first geometric-type AC is the (original) Geometric AC

which was introduced independently by Caselles et al. [19] and
Malladi et al. [27]. The main idea is to move the curve using the
curvature and the normal direction forces and stop the motion at
the object boundaries using an edge-based function gðxÞ ¼ gðjrIj2Þ

(where rI is the gradient of the input image I) which approaches
0 on the edges and 1 otherwise, e.g., gðxÞ ¼ e�ð1=s

2
e ÞjrGs�IðxÞj2 with se

a scaling factor and Gs the smoothing Gaussian kernel of scale s.
Caselles et al. [20] proposed another geometric-type AC, called
Geodesic AC, using an energy functional to search for a curve of
minimal edge-weighted length (geodesic curve). This model is
similar to the Geometric AC, except that rg is used as a vector
field force to increase the curve attraction towards weak edges.
Then, Paragios et al. [24] proposed to replace the vector field force
rg with the well-known gradient vector flow (GVF) introduced
by Xu and Prince [15] to increase the capture range, leading to the
GVF Fast Geometric AC (shortly, GVF-Geo AC). Differently, Chan
and Vese [22] proposed a new model, which we call the CV AC,
using an approximation of the Mumford-Shah functional. All
these geometric-type ACs are considered as classical models in
the research field and their level-set parameters are summarized
in Table 1. Here, we do not consider other approaches that
incorporate prior knowledge about object shape [28–30] or
texture [31] since they require a training stage which is generally
application specific.

We can see from Table 1 that the first three models depend
heavily on the edge function gðxÞ, making themselves prone to be
trapped in false edges caused by noises. This can be alleviated by
performing smoothing with larger s, yet it in turn leads to inexact
results because edges are smoothed as well. The CV AC, on the
other hand, does not depend on g (this gives it the name

‘‘without-edge AC’’) but on the homogeneity assumption, i.e.,
image features within a segment should be similar. In this case,
the image I is assumed to be consisted of two segments with
approximately piecewise-constant intensities. The CV energy
functional F(C) is defined as

FðCÞ ¼ F1ðCÞþF2ðCÞ ¼

Z
insideðCÞ

jIðxÞ�cinj
2dxþ

Z
outsideðCÞ

jIðxÞ�coutj
2dx,

ð3Þ

where cin and cout are, respectively, the average intensities inside
and outside the variable curve C. Compared to the other three AC
models, the CV AC can detect the objects more exactly since it
does not need to smooth the initial image (via the edge function
gðjrIsj

2Þ where Is ¼ Gs�I), even if it is very noisy. In other words,
this model is more robust to noise and thus suitable for medical
images since they are often noisy and low contrast. Also, it was
shown to provide a relaxed initial position requirement [22].

However, the convergence of the CV AC depends on the
homogeneity of the segmented objects. When the inhomogeneity
becomes large like in carpal bones or knee bones, the CV AC
provides unsatisfactory results. To address this, let us consider a
synthetic image (size 128�128) with an inhomogeneous object
having five different parts over the bright background as shown
in Fig. 1. The image intensity is scaled on the range [0, 1], with 1
the brightest. The CV fitting term F(C) is calculated at each
iteration during the evolution and plotted in Fig. 2.1 As expected,
the curve moves in the direction of decreasing F(C) and stops
when F(C) reaches a minimum value, which is F(Cn)¼34 (at
iteration number 16) in this case. Nevertheless, this is not the
‘‘desirable’’ result, whose minimum fitting term is F(Cdes) ¼ 197.
Clearly, the desirable minimum here is larger (more local) than
the practically resulting minimum F(Cn).

From the above example, we can see that the global minimum
of the CV energy functional does not always guarantee the
desirable results, especially when a segment is highly inhomoge-
neous. To provide flexibility in searching for the desirable mini-
mum (which is often neither the most local nor global), Li and
Yezzi [32] proposed a dual-front AC model with the active region’s
width as a controlling factor. The model is an iterative process
consisting of the active region relocation and the dual front
evolution which is another iterative process, demanding a high
computational cost.

Vese and Chan [23] and Tsai et al. [33] independently and
contemporaneously proposed to use the original Mumford-Shah
functional [10] to segment inhomogeneous objects. Because the
minimizer of the Mumford-Shah functional is difficult to get (and
remains an issue) due to the term of discontinuities, the authors in
[23,33] presented the set of discontinuities in form of a curve
evolution problem. The resulting optimization process involves
both evolving a level-set function and solving Poison partial
differential equations. Although it can generate a piecewise smooth
approximation of the input image that well represents the objects
of interest, this process is very complicated and computationally
expensive and requires a good initialization. Another piecewise
smooth approach was presented in [34]. The authors elegantly
generalized the mean intensities cin and cout in (3) to the local
weighted averaging using a Gaussian kernel convolution. This leads
to a model that approximates the original Mumford-Shah func-
tional but has a complexity close to that of the CV model. When the
variance of the Gaussian kernel approaches infinity, this model
becomes the CV model. On one hand, this variance parameter

Table 1
Level-set parameters of the classical AC models.

b VN ~S

Geometric g(x) ZgðxÞ ~0

Geodesic g(x) ZgðxÞ rgðxÞ
GVF-Geo g(x) ZKðxÞgðxÞ gðxÞð1�jKðxÞjÞ½û ,v̂�

CV g ZþðI�cinÞ
2
�ðI�cout Þ

2 ~0

g and Z are constants, ½û ,v̂� the GVF [15], K(x) a function depending on the curve

normal and the GVF, I¼ I(x) the image intensity, and cin and cout, respectively, the

average intensity values inside and outside the variable curve.

1 Note that Fig. 2 plots only the term F(C) in (3), whereas the result in Fig. 1

was obtained from the original CV model [22] that includes both F(C) and a length

term to guarantee the smoothness of the contour.
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