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h i g h l i g h t s

• I show consistency of some fixed effects averages in the F.E. Poisson setting.
• This implies average marginal effects are estimable in levels, not just proportions.
• I derive the asymptotic variance for this class of estimators.
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a b s t r a c t

In multiplicative unobserved effects panel models for nonnegative dependent variables, estimation of
average marginal effects would seem problematic with a large cross section and few time periods
due to the incidental parameters problem. While fixed effects Poisson consistently estimates the slope
parameters of the conditional mean function, marginal effects generally depend on the unobserved
heterogeneity. However, I show that a class of fixed effects averages is consistent and asymptotically
normal with only the cross section growing. This implies researchers can estimate average treatment
effects in levels as opposed to settling for average proportional effects.

Published by Elsevier B.V.

1. Introduction

The multiplicative effects panel model for nonnegative depen-
dent variables is attractive in part because it is straightforward
to handle unobserved cross sectional heterogeneity. Fixed effects
Poisson (FEP) consistently estimates the slope parameters of the
conditional mean function without full distributional assump-
tions (Wooldridge, 1999). However, it is not immediately clear
how to estimate quantities like average partial effects (APE) and
average treatment effects (ATE) as these depend on the unobserved
heterogeneity.

I study the use of estimated individual effects from Poisson
quasi maximum likelihood estimation (QMLE). There is no inci-
dental parameters problem (IPP) with the QMLE slope parameter
estimates, which are algebraically equivalent to FEP (Lancaster,
2000). To my knowledge, no one has formally studied estimators
of average marginal effects in this model. These estimators poten-
tially suffer from the IPP when each fixed effect is estimated using
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a relatively small number of observations (Arellano and Hahn,
2007). I show that for the multiplicative model, however, a class of
fixed effect averages is consistent and asymptotically normal with
only the cross section dimension growing.

For thorough discussions of methods for dealing with the IPP,
see Lancaster (2000) and Arellano and Hahn (2007). Empirical
researchers also have the option to focus on quantities that do
not depend on unobserved heterogeneity. For instance, with an
exponential conditional mean function, the slope coefficients can
be interpreted as approximate semi-elasticities, and proportional
treatment effects are also identified (Lee and Kobayashi, 2001).
In my view, however, using estimated fixed effects deserves more
attention as average partial effects in levels may be more econom-
ically meaningful.

The rest of this paper is organized as follows. Section 2 re-
views the model and derives the asymptotic properties of the
proposed average marginal effects estimators. Section 3 presents
some observations about exponentialmodels. Section 4 applies the
estimators to data on patents, while Section 5 concludes. An online
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appendix (see Appendix A) contains a brief Monte Carlo experi-
ment showing good performance of the proposed estimators.

2. Theory

As in Wooldridge (1999), let {(yi, xi, ci), i = 1, . . .} be a se-
quence of i.i.d. random variables, where yi is a T × 1 vector of
nonnegative dependent variables (not necessarily counts), xi ≡

(x′

i1, . . . , x
′

iT )
′, is a T × K matrix of explanatory variables, and ci

is unobserved scalar heterogeneity that may depend on xi. The
multiplicative effects panel model assumes

E(yit |xit , ci) = cim(xit , β0), t = 1, . . . , T , (1)

wherem(xit , β0) is a knownpositive function andβ0 is anunknown
K ×1 parameter vector. I also assume strict exogeneity conditional
on the unobserved heterogeneity, written as

E(yit |xi, ci) = E(yit |xit , ci). (2)

The most common choice in the empirical literature is
m(xit , β) = exp(xitβ), but the main results of this paper do not
require this form. A more flexible option is the Wooldridge (1992)
alternative to the Box–Cox transformation. For binary or fractional
responses (which also require 0 < ci < 1), Wooldridge (1999)
suggests the logistic or normal CDF form().

The fixed effects Poisson (FEP) estimator derives from the
nominal assumption that conditional on xi and ci, the yit are
independently distributed as Poisson with mean given by (1).
Conditioning on

∑T
t=1yit yields the multinomial conditional

distribution for yi (Hausman et al., 1984). The FEP estima-
tor, denoted β̂, solves maxβ

∑N
i=1ℓi(β), where ℓi(β) =

∑T
t=1

yit ln
[
m(xit , β)/

∑T
r=1m(xir , β)

]
is the multinomial log-likelihood.

Wooldridge (1999) showed that consistent estimation of β0 only
requires (1) and (2), meaning the yit need not be Poisson and may
have arbitrary (conditional) serial dependence.

Average marginal effects are often more salient, as β0 may not
have any meaningful interpretation apart from the exponential
case. The APE of a continuous xj is:

δj,0 = E
[

∂E(yit |xit , ci)
∂xitj

]
= E

[
ciT−1

T∑
t=1

∂m(xit , β0)
∂xitj

]

≡ E

[
ciT−1

T∑
t=1

Mj(xit , β0)

]
,

whereMj(xit , β) = ∂m(xit , β)/∂xitj. The ATE for a binary xk is:

δk,0 =E
[
E(yit |xit(−k), xitk = 1, ci) − E(yit |xit(−k), xitk = 0, ci)

]
≡E

[
ciT−1

T∑
t=1

(
m(xit(−k), 1, β0) − m(xit(−k), 0, β0)

)]
,

where the subscript (−k) indicates element k has been omitted,
and where m(xit(−k), 1, β) and m(xit(−k), 1, β) correspond to a 1 or
0 being inserted for xitk in m(xit , β).

The APE and ATE are examples of fixed effect averages of the
form λ0 = E

[
cih(xi, β0)

]
, where h(xi, β) is a P × 1 random

function of the covariates. For example, the APE uses h(xi, β) =

T−1∑T
t=1Mj(xit , β). The candidate estimator of λ0, given in Eq. (3),

uses the Poisson QMLE for ci, denoted c(wi, β̂), when these are
estimated along with β0.

λ̂ = N−1
N∑
i=1

c(wi, β̂)h(xi, β̂), (3)

where c(wi, β) =
∑T

t=1yit/
∑T

t=1m(xit , β) and wi ≡ {yi, xi} , i =

1, . . . ,N . PoissonQMLE and FEP are algebraically equivalent forβ0,

but when N is large, it may be more computationally practical to
estimate ci following FEP estimation of β0 (Cameron and Trivedi,
2013).

While it is already known that there is no IPP in this model in
terms of estimating β0, one should not generally expect averages
over estimated incidental parameters to be consistent, even if slope
parameter estimates are consistent (Arellano and Hahn, 2007).
Clearly c(wi, β) ̸= ci, even if evaluated at β0, and with T fixed,
c(wi, β̂) cannot be consistent for ci. However, Theorem 1 shows for
this model, there is no IPP for fixed effect averages over the cross
section like in Eq. (3).

Theorem 1. Assume (1) and (2), and that each element of the P × 1
random vector g(wi, β) ≡ c(wi, β)h(xi, β) satisfies the regularity
conditions on q(wi, β) from Theorem 12.2 of Wooldridge (2010).
Then as N → ∞,

λ̂
p

→ λ0.

Proof. By Lemma 12.1 in Wooldridge (2010), consistency of β̂ and
the regularity conditions imply

N−1
N∑
i=1

c(wi, β̂)h(xi, β̂)
p

→ E
[
c(wi, β0)h(xi, β0)

]
.

Then, by the Law of Iterated Expectations,

E
[
c(wi, β0)h(xi, β0)

]
=E

{
E
[
c(wi, β0)h(xi, β0)|xi, ci

]}
=E

[∑T
t=1 E(yit |xi, ci)∑T
t=1 m(xit , β0)

h(xi, β0)

]

=E

[
ci
∑T

t=1 m(xit , β0)∑T
t=1 m(xit , β0)

h(xi, β0)

]
=E

[
cih(xi, β0)

]
□

A priori, one might expect c(wi, β̂) and λ̂ to perform well any-
way for larger T . The result that λ̂ should performwell with as few
as two time periods (the minimum needed for FEP), is perhaps less
intuitive. Furthermore, consistency of N−1∑N

i=1c(wi, β̂) for E(ci)
follows from setting h(xi, β) = 1, but using c(wi, β̂) to learn about
Var(ci) or other features of the distribution of ci requires more
assumptions.

Asymptotic normality of λ̂ follows from a standard argument
similar to the deltamethod, butmaking sure to account for the ran-
domness inwi. The asymptotic variance formula in Theorem2 uses
that Avar

[√
N(β̂ − β0)

]
= A−1

0 B0A−1
0 , where A0=− E

[
∇

2
βℓi(β0)

]
,

B0=Var
[
si(β0)

]
, and si(β0)=∇βℓi(β0)′ (Wooldridge, 1999).

Theorem 2. Under the assumptions in Theorem 1, as N → ∞,
√
N(λ̂ − λ0)

d
→ N(0,D0),

where

D0 = Var
[
g(wi, β0) − λ0 − G0A−1

0 si(β0)
]
,

G0 = E
[
∇βg(wi, β0)

]
= E

[
c(wi, β0)∇βh(xi, β0) + h(xi, β0)∇βc(wi, β0)

]
,

∇βc(wi, β) = −c(wi, β)

(∑T
t=1 ∇βm(xit , β)∑T
t=1 m(xit , β)

)
,

∇βh(xi, β) is the P × K Jacobian of h(xi, β), and
∇βm(xit , β) is the 1 × K gradient of m(xit , β).
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