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h i g h l i g h t s

• We introduce a new stochastic choice rule, the Random Categorization (RCG) rule.
• We characterize the RCG in a stochastic choice dataset using an acyclicity axiom.
• The RCG accommodates violations of IIA (independence of irrelevant alternatives).
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a b s t r a c t

In this study we introduce a new stochastic choice rule that categorizes objects in order to simplify the
choice procedure. At any given trial, the decision maker deliberately randomizes over mental categories
and chooses the best item according to her utility function within the realized consideration set formed
by the intersection of the mental category and the menu of alternatives. If no alternative is present both
within the considered mental category and within the menu the decision maker picks the default option.
We provide the necessary and sufficient conditions that characterize this model in a complete stochastic
choice dataset in the form of an acyclicity restriction on a stochastic choice revealed preference and other
regularity conditions. We recover the utility function uniquely up to a monotone transformation and the
probability distribution over mental categories uniquely. This model is able to accommodate violations of
IIA (independence of irrelevant alternatives), of stochastic transitivity, and of theManzini–Mariotti menu
independence notion (i-Independence).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Categorization has been recognized as an important part of the
decision making process. Decision makers (DMs) categorize in or-
der to simplify complex decision situations (Manzini andMariotti,
2012). At the same time new evidence suggests that decisionmak-
ers deliberately randomizewhen choosing (Agranov and Ortoleva,
2014). Here we provide a model that connects categorization,
bounded rationality, and randomness in choice. The DM has access
to a fixed set of categories defined as bundles of alternatives and,
at any given trial, she considers with fixed probability one of those
categories. Then the DM chooses according to her preferences the
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comments and encouragement.
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best item at the intersection of the considered category that is
available in themenu. The probability of choosing a particular item
in a menu is the sum of the probabilities of all mental categories
that have a non-empty intersection with the menu and that, even
more importantly, are such that there are no better alternatives
within it than the fixed item.

This probabilistic categorization rule allows for menu depen-
dence, and thus is more general than the popular model of limited
attention and random choice put forward by Manzini and Mariotti
(2014) (hereinafterMM). It also allows for degenerate probabilities
and, in fact, the proposed model nests the standard rational model
with strict preferences with a categorization rule that entails con-
sidering the category of all alternativeswith probability 1. Stochas-
tic intransitivity is also accommodated, aswell as the similarity and
compromise effectswhich represent a violation of the IIA condition
(Luce, 1959 independence of irrelevant alternatives).

The random categorization (RCG) rule is characterized by the
acyclicity of a stochastic revealed preference relation that consists
of declaring a to be stochastically revealed preferred (strictly) to b
if and only if the probability of choosing b in a menu is changed
(either negatively or positively) by introducing a into such menu

http://dx.doi.org/10.1016/j.econlet.2017.07.006
0165-1765/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.econlet.2017.07.006
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2017.07.006&domain=pdf
mailto:vaguiar@uwo.ca
http://dx.doi.org/10.1016/j.econlet.2017.07.006


V.H. Aguiar / Economics Letters 159 (2017) 46–52 47

(i.e., if a has a non-zero impact on the probability of choosing b
in a menu). The second condition is a total monotonicity require-
ment that is equivalent to the Block–Marschak conditions and thus
makes our model a subcase of the random-utility model (RUM).
The random categorization rule is distinct from other efforts to
generalize MM and, in particular, it is not nested nor does it nest
the random feasibility rule proposed by Brady and Rehbeck (2015)
and Zhang (2016). All proofs are collected in Appendix.

2. The environment and the dataset

Formally, consider a finite choice set X . There is an always-
available option {o} (i.e., not choosing or a default that is always
possible to obtain). A stochastic choice dataset is a set of menus
M ⊆ 2X together with a probabilistic choice map for any given
menu and an item inside the menu: p : X ∪ {o} × M →[0, 1],
with p(a, A) denoting the probability of picking a from A ∪ {o},
and with p(o, A) denoting the probability of not choosing anything
from A ∈ M, and thus picking the outside option or default. We fix
p(o, ∅) = 1. The probability of choice is such that it adds-up to 1:∑

a∈Ap(a, A)+p(o, A) = 1. In summary, a dataset is the sequence of
menus and choice probability pairs: {A, p(a, A)}A∈M,a∈X∪{o}. Hence-
forth, we require that the stochastic choice dataset be complete,
equivalently, M ≡2X is the power set.

3. The model: Random categorization (RCG) Rule

Having been given a menu, a DM who follows the random cat-
egorization rule selects a mental category with a fixed probability
and then chooses the item that maximizes her utility from those
alternatives that belong to the considered category and to the given
menu. In the event that no item in the considered category is in the
menu, the DM picks the default alternative {o}.

Formally, a DM is endowed with a collection of categories over
the choice set X . We take the categories as given but we do not
observe them. The categories are a collection of subsets of X ,
formallyD ⊆ 2X . The DM has a probability measure that is defined
over the categories and that represents her propensity to consider
a given category at any given trial. A probability of consideration is
a mapping m : D ↦→ [0, 1] such that

∑
D∈Dm(D) = 1 and m(D) ∈

[0, 1]. Finally, the DM also is endowed with a fixed utility function
u : X ↦→ R that represents her tastes; we assume that it is injective
or, equivalently, we rule out the possibility of indifference.

When facing a menu, the DM draws a mental category D ∈ D
withprobabilitym(D) and then forms a consideration setΓ (D, A) =

D ∩ A. Then she picks a = argmaxb∈Γ (D,A)u(b), which is the item
that maximizes her utility in the consideration set. Thus under the
RCG rule the probability of choosing a ∈ A is given by pRC (a, A) =∑

D∩A̸=∅:D∈DI(u(a) > u(b)∀b ∈ (D ∩ A) \ {a})m(D), where I(u(a) >

u(b)∀b ∈ (D ∩ A) \ {a}) is equal to 1 if the condition is true and is
equal to zero if the condition is false. Alternatively, we can write
pRC (a, A) =

∑
{a}∩D̸=∅;BA(a)∩D=∅:D∈D m(D) where BA(a) = {b ∈ A :

u(b) > u(a)} is the set of better than a elements in the menu A.

Definition 1 (Random Categorization rule, RCG). A stochastic choice
dataset has a Random Categorization rule representation if there
is a triple u, m and D that are the injective utility function, the
probability of consideration map, and the mental categories re-
spectively, such that the probability of choosing a ∈ X in a menu
A ∈ M, is the cumulative probability of all categories that produce
a consideration set where a ∈ A is the best element available:

pRCG(a, A) =

∑
{a}∩D̸=∅;BA(a)∩D=∅:D∈D

m(D).

Finally, the probability of choosing the default is pRCG(o, A) =∑
A∩D=∅:D∈Dm(D).

In summary, the probability of choosing a ∈ A under the
RCG rule pRCG(a, A) is equivalent to the probability that the DM
considers a ∈ A but does not consider any alternative that is better
than it. By definition

∑
a∈ApRCG(a, A) + pRCG(o, A) = 1.

There are two important special cases of the RCG rule, namely
the standard rational model (without indifference) and the MM
model of consideration sets with menu independence.

Example 1 (Standard Rational, DM). A standard deterministic ratio-
nal DM has a probability of choice pDR(a, A) = I(u(a) > u(b)∀b ∈

A \ {a}), for an injective utility function u : X ↦→ R and for the
indicator function I(·). Clearly, this is a RCG rule with categories
D = {X} with probability m(X) = 1 and with the same utility
function u.

However, the RCGallows for deterministic revealed preferences
reversals, or for violations of the Generalized Axiom of Revealed
Preferences (GARP).

Example 2 (Failures of Deterministic Rationality/Generalized Axiom
of Revealed Preferences, GARP). Consider X = {a, b, c}, and D =

{{a, b}, {b, c}, {a, c}} such that u(a) > u(b) > u(c). We have
m({i, j}) =

1
3 , for i, j ∈ X . Let CpRCG (A) = {a ∈ A|pRCG(a, A) >

0}, be the choice correspondence induced by the RCG rule. Now,
observe that CpRCG ({a, b, c}) = {a, b} because pRCG(a, {a, b, c}) =
2
3 and pRCG(b, {a, b, c}) =

1
3 . This means that we observe a to

be (deterministically) strictly revealed preferred to c , aPc , with P
representing a strict revealed preference relation that means that
a ∈ C({a, b, c}) while c ̸∈ C({a, b, c}). However, when we consider
the menu {a, c}, we observe that CpRCG ({a, c}) = {a, c} this means
that c is revealed indifferent to a, cIa, where I is the determin-
istic revealed indifference relation such that c ∈ C({a, c}) and
a ∈ C({a, c}). In summary, given that GARP fails, then there is no
utility function such that the choice correspondence is generated
by maximizing it: CpRCG (A) = argmaxa∈Au(a).

The MMmodel is also a special case of the RCG rule.

Example 3 (MM stochastic consideration with menu independence).
The MM model of consideration sets consists of an attention pa-
rameter γ : X ↦→ (0, 1) and a utility function u : X ↦→

R such that pMM (a, A) = γ (a)
∏

b∈A:u(b)>u(a)(1 − γ (b)). In this
case, the categories are comprised of all possible subsets of X
including the empty set (which has positive probability), D = 2X

and the probability of consideration of the categories is m(D) =∑
A⊆D(−1)|D\A|(

∏
a∈X\A(1−γ (a))), which the reader can verify gen-

erates the following: pRCG(a, A) =
∑

{a}∩D̸=∅;BA(a)∩D=∅:D∈D m(D) =

γ (a)
∏

b∈A:u(b)>u(a)(1 − γ (b)). The fact that γ is non-degenerate
implies that the support ofm is the whole power set 2X , or alterna-
tively that the categories include all of the elements of the power
set.

Of course, the RCG rule, allows for probabilistic datasets that
cannot be accommodated by neither the deterministic rational
model or the MMmodel.

Example 4 (Categorization/Failures of i-Independence). Consider the
choice set X = {a, b, c, d}, such that u(c) > u(a) > u(b) > u(d)
with categories D = {{a, c, b}, {a}, {b, d}}. We let the map m :

D ↦→ (0, 1) be any non-degenerate probability over the categories,
for all D ∈ D. Then we give the DM the menus A = {a, c, b},
B = {a, d, b}, and thus we have: (i) pRCG(a, A \ {b})/pRCG(a, A) =

m({a})/m({a}), (ii) pRCG(a, B \ {b}) = m({a, c, b}) + m({a}), and
(iii) pRCG(a, B) = m({a}). Finally, (i), (ii) and (iii) imply that
pRCG(a,A\{b})
pRCG(a,A)

<
pRCG(a,B\{b})
pRCG(a,B)

, when m(D) > 0 for all D ∈ D. Note that
i-Independence, a necessary condition for MM, that requires that
p(a,A\{b})
p(a,A) =

p(a,B\{b})
p(a,B) for all a, b ∈ A ∩ B is violated.
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