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h i g h l i g h t s

• We consider I(1) ARMA processes with singular error covariance matrix.
• Also in the left coprime case the cointegrating rank shown to depend upon a(1) only.
• Definition and discussion of exact cointegration.
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a b s t r a c t

We consider the cointegration properties of singular ARMA processes integrated of order one. Such
processes are necessarily cointegrated as opposed to the regular case. We show that in the left coprime
case the cointegrating space only depends upon the autoregressive polynomial at one.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we analyze the (integration and) cointegration
properties of singular AR andARMAmodels. Singular AR andARMA
models, i.e., models with singular error variance, occur in the
dynamic stochastic general equilibrium (DSGE) literature, if the
number of shocks is strictly smaller than the number of observ-
ables (see, e.g., Komunjer and Ng, 2011). They also occur in linear
dynamic factor models. In this context the latent variables are
typically described as a singular AR or ARMAmodels (see, e.g., Forni
et al., 2000). Furthermore, in this setting singular ARMA models
may arise asmodels for the static factors, if the number of the static
factors is strictly larger than the number of dynamic factors. In a
stationary setting singular ARmodels are treated in Anderson et al.
(2012) and the ARMA case is considered in Anderson et al. (2016).

Cointegration properties of singular AR models are analyzed in
Barigozzi et al. (2016). Whereas regular AR systems are always left
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coprime, this is not true for singular AR systems, see Anderson et al.
(2012), which thus show a similarity to ARMA models. Taking this
similarity into account we are led to considering the cointegration
properties of singular ARMA models. We first discuss that in the
singular case cointegration is inevitably present. Then we show
that in the left coprime case the cointegrating space only depends
on the autoregressive polynomial at z = 1, as in the regular case.

The paper is organized as follows: Section 2 introduces the
setting and states the underlying assumption, Section 3 gives the
result and Section 4 briefly concludes.

2. Setting and assumptions

Consider an ARMA system

a(z)yt = b(z)εt , (1)

where

a(z) :=

p∑
j=0

ajz j, aj ∈ Rn×n, a0 = In,
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b(z) :=

q∑
j=0

bjz j, bj ∈ Rn×q

with z used as both a complex variable as well as the backward
shift operator on the integers Z. The process {εt} is white noise
with Eεtεt = Iq. The system is singular if q < n and regular for
q = n and rk b(z) = q for one z.

Assumption 1. Throughout we assume that:

(i) The determinant of the AR polynomial fulfills

det a(z) ̸= 0 for |z| ≤ 1, except for z = 1. (2)

(ii) System (1) fulfills the strict miniphase assumption

rk b(z) = q |z| ≤ 1 (3)

(iii) In addition we assume that the system (1) is integrated of
order 1, i.e., the transfer function

k(z) := a−1(z)b(z) (4)

has a pole at z = 1, but the function c(z) := (1 − z)k(z) has
all poles outside the closed unit circle. Thus,

c(z) =

∞∑
j=0

cjz j (5)

is a convergent power series for |z| ≤ 1.
(iv) The pair (a(z), b(z)) is left coprime, i.e., every common left

(polynomial matrix) divisor of a(z) and b(z) is a unimodular
matrix.

With respect to item (iv) of Assumption 1 note that a polynomial
matrix u(z) is unimodular if and only if det u(z) ≡ c ̸= 0 and that
(a(z), b(z)) is left coprime if and only if rk (a(z), b(z)) = n for all
z ∈ C. For amore detailed discussion see, e.g., Hannan andDeistler
(2012).

3. The cointegration properties in the singular case

Let

k(z) = a−1(z)b(z) (6)
:= u(z)Λ(z)v(z)

denote the Smith–McMillan form (see, e.g., Hannan and Deistler,
2012) of the transfer function k(z). Here u(z) and v(z) are unimod-
ular n × n respectively q × q matrices and Λ(z) is a unique n × q
diagonal matrix of the form

Λ(z) :=

⎛⎜⎜⎜⎜⎝
p1(z)
q1(z)

0
. . .

pq(z)
qq(z)

0 · · · 0

⎞⎟⎟⎟⎟⎠ , (7)

where pi(z), qi(z), for i = 1, . . . , q are relatively prime and monic
(i.e., with leading coefficient equal to one) polynomials, pi(z) di-
vides pi+1(z) for i = 1, . . . , q − 1 and qi+1(z) divides qi(z) for
i = 1, . . . , q − 1. For a given transfer function k(z), the zeros of
the polynomials pi(z) are the zeros of k(z) and the zeros of the
polynomials qi(z) are the poles of k(z).

The strict miniphase assumption (3) implies that pi(1) ̸= 0 for
i = 1, . . . , q and condition (2) implies that the zeros of qi(z) are
either at z = 1 or satisfy |z| > 1. Consequently, there is a c , with
1 ≤ c ≤ q, such that

qi(z) = (1 − z)q̄i(z), i = 1, . . . , c (8)

with q̄i(1) ̸= 0 for i = 1, . . . , c and qi(1) ̸= 0 for i = c + 1, . . . , q.
Accordingly we may write

Λ(z)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1(z)
q̄1(z)

(1 − z)−1 0 · · · 0

0
. . .

. . . 0
. . . pc (z)

q̄c (z)
(1 − z)−1

.

.

.

.

.

.
pc+1(z)
qc+1(z)

. . .
. . . 0

0 · · · 0 pq(z)
qq(z)

0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9)

and

c(z)

= u(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1(z)
q̄1(z)

0 · · · 0

0
. . .

. . . 0
. . . pc (z)

q̄c (z)

.

.

.

.

.

.
pc+1(z)
qc+1(z)

(1 − z)
. . . 0

0 · · · 0 pq(z)
qq(z)

(1 − z)
0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
× v(z). (10)

Now, consider, a Beveridge–Nelson type decomposition (see, e.g.,
Beveridge and Nelson, 1981; Phillips and Solo, 1992)

c(z) = c(1) + (1 − z)c∗(z), (11)

with c∗(z) rational with no poles and zeros inside or on the unit
circle.

The solution of the ARMA system on N we consider (see, e.g.,
Bauer and Wagner, 2012) is of the form

yt = c(1)
t∑

j=1

εj + c∗(z)εt . (12)

Taking the first difference of yt as given in (12) leads to a process
yt − yt−1 =

∑
∞

j=0cjεt−j for t ≥ 2 that is stationary. As is immedi-
ately clear from (12), the left kernel of c(1), lker c(1), is the space of
cointegrating relationships β , say. Clearly, the cointegrating space
has at least dimension n−q. Thus, in the singular case cointegration
is always present. Since pi(1)

q̄i(1)
̸= 0 and both u(1) and v(1) are

nonsingular, it is directly seen from (10) that the dimension of
lker c(1) is equal to n − c .

Defining

ã(z)

:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̄1(z)(1 − z)
. . . 0

q̄c (z)(1 − z)
qc+1(z)

. . .

qq(z)
1

0
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
× u−1(z) (13)
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