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a b s t r a c t

This paper extends themulti-scale serial correlation tests of Gençay and Signori (2015) for observable time
series to unobservable errors of unknown forms in a linear dynamic regression model. Our tests directly
build on the variance ratio of the sum of squaredwavelet coefficients of residuals over the sum of squared
residuals, utilizing the equal contribution of each frequency of a white noise process to its variance and
delivering higher empirical power than parametric tests. Our test statistics converge to the standard
normal distribution at the parametric rate under the null hypothesis, faster than the nonparametric test
using kernel estimators of the spectrum.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Existing residual based serial correlation tests for dynamic
models fall into two categories, the parametric tests in the time
domain and the nonparametric tests in the frequency domain. The
residual based parametric tests estimate autocorrelation coeffi-
cients directly, delivering easy implementation and desirable finite
sample performance (Hayashi, 2000; Box and Pierce, 1970; God-
frey, 1978;Wooldridge, 1990, 1991), whereas their power relies on
the choice of lag length heavily. In contrast, the residual based non-
parametric tests compare the kernel-based spectrum estimator
with thewhite noise spectrum and havemore power (Hong, 1996;
Hong and Lee, 2003). Nevertheless, the nonparametric estimation
of the underlying spectrum sacrifices the convergence rate, which
is slower than the parametric rate and often associated with poor
finite sample performance (Chen and Deo, 2004a, b).

Based on the fact of the equal contribution of each frequency
of a white noise process to its variance, Gençay and Signori
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(2015) proposes a family of wavelet-based serial correlation tests
for observable time series, GS and GSM , utilizing only wavelet
coefficients of the observed time series data. This paper extends
the GS and GSM tests into a linear regression framework, particu-
larly when lagged dependent variables are included in regression
equations. Ourmodified tests are robust tomodels with condition-
ally heteroscedastic errors of unknown form. Inheriting the test
design of Gençay and Signori (2015) by using the additive variance
decomposition of the wavelet and the scaling coefficients, instead
of any nonparametric estimation of the underlying spectrum, our
test statistics converge to the normal distribution at the parametric
rate under the null hypothesis (faster than the nonparametric test)
and display higher power than the parametric test. In addition,
contrary to the sensitiveness of finite sample performance to the
choice of lag length for the parametric test, and the choice of
bandwidth for the nonparametric test, our tests are rather stable
when different wavelet decomposition levels are utilized.

This paper proceeds as follows. Section 2 illustrates the model-
ing environment for our residual-based tests. Section 3 proposes
The corresponding modified test statistics. Section 4 reports com-
prehensiveMonte Carlo simulations for finite sample performance
of our tests in comparison to commonly used tests. Section 5
contains concluding remarks of this paper.
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2. Model setting

Consider the dynamic regression model

yt = Y ′

tα + W ′

tγ + ut = X ′

tβ + ut (1)

where: Y ′
t = (yt−1, . . . , yt−P )with P ≥ 1;α′

= (α1, . . . , αP ) having
the values such that the roots of zP − α1zP−1

− · · · − αP = 0 are
all strictly inside the unit circle; Wt is an L-vector of regressors
which may include lagged exogenous variables and constants;
X ′
t ≡ (Y ′

t ,W
′
t ); and β ′

≡ (α′, γ ′). Let K = P + L denotes the
number of regression coefficients, and T denotes the number of
observations available for estimation. All of the data generation
processes are subject to the following two assumptions.

Assumption 2.1 (Ergodic Stationary). The (K + 1) dimensional
vector stochastic process {yt , Xt} is jointly stationary and ergodic.

Assumption 2.2 (Rank Condition). The K ×K matrix E(XtX ′
t ) is non-

singular (and hence finite), which is denoted by ΣXX .

Assumption 2.1 implies the stationarity and ergodicity of error
process, {ut}. Nevertheless, the unconditional homoscedasticity
does not exclude the models with a conditional heteroscedastic
error term. To be specific, for any stationary and ergodic process,
Assumption 2.1 allows any form of unconditional higher order
moment dependence which disappears as time lag increases, and
any form of time varying conditional higher order moments. We
consider tests for the following null hypothesis:

Assumption 2.3 (Stronger form of Predeterminedness). All regres-
sors are predetermined such that: E(ut |ut−1, ut−2, . . . , Xt , Xt−1,
. . .) = 0.1

Assumption 2.3 is stronger than the assumption of white noise
and needed for the derivation of the null distribution of our test
statistic. If Assumptions 2.1, 2.2 and 2.3 are satisfied, the OLS coef-
ficient estimator in Eq. (1) is consistent, namely β̂

p
−→ β (Hayashi,

2000 Proposition 2.1(a), page 124). Throughout the paper, we as-
sume Assumptions 2.1 and 2.2 hold and impose periodic boundary
conditions on all time series, like {ut}, where ut ≡ ut mod T .2

3. Asymptotic null distribution

Throughout this paper, all the statistics constructed with
wavelets are based on the Maximum Overlap Discrete Wavelet
Transform (MODWT) filter.3 Define themth level of wavelet coef-
ficients as wm,t =

∑Lm−1
l=0 h̃m,lut−l mod T , where Lm := (2m

− 1)(L −

1) + 1, L is the length of the initial MODWT filter, and {h̃m,l} is the
mth level MODWT filter.

Assumption 2.3 indicates that cov(Xt−j, ut ) = 0, while it allows
cov(Xt+j, ut ) ̸= 0 for some j > 0. The correlation between the
future lagged dependent variable and current error termmakes the
asymptotic variance estimator in theGS andGSM tests inconsistent
when the realizations of error terms {ut} are replaced with residu-
als {ût} directly. As a result, the test statistics of Gençay and Signori

1 Assumption 2.3 is a sufficient condition for gjt ≡ [ut−jut , utX ′
t ]

′ to be a
martingale difference sequence, stronger than we need. We maintain this stronger
assumption for the convenience of interpretation.
2 The notation a − b mod T stands for ‘a − b modulo T ’. If j is an integer such

that 1 ≤ j ≤ T , then j mod T ≡ j. If j is another integer, then j mod T ≡ j + nT
where nT is the unique integer multiple of T such that 1 ≤ j+nT ≤ T . The periodic
boundary conditions have trivial impact on the finite sample distribution due to the
short length of most discrete wavelet filters.
3 For details of MODWT filter, see Gençay et al. (2001) and Percival andWalden

(2000).

(2015) distribute more tightly around zero than a standard normal
distribution in dynamic models, more difficult to reject under the
null hypothesis and less powerful. For dynamic linear models, we
modify the statistics to restore the asymptotic distributions and
improve efficiency in small samples.

Assumption 3.1 (Finite Fourth Moments for Regressors). E(u2
t ut−j

ut−k), E(utut−jut−kxt−l,i), E(utut−jxt−k,ixt−l,n), E(ut−jxt,ixt−k,nxt−l,s),
E(xt,ixt,nxt−j,sxt−k,v) exist and are finite for all j, k, l = 0, 2, . . . , Lm−

1 and i, n, s, v = 1, 2, . . . , K .

Theorem 3.1. If Assumptions 2.1, 2.2 and 2.3 are satisfied, then the
sample analogue Êm,T constructed with residuals ût from the model
in Eq. (1) is a consistent estimator of the wavelet variance ratio Em

Êm,T =
wvarm(û)
var(û)

=

∑T
t=1 ŵ2

m,t∑T
t=1 û

2
t

p
−→

1
2m .

Further, if Assumption 3.1 is satisfied, then

LGm =

√
Ts4

4H ′
mĈ ′

mΨ̂mĈmHm

(
Êm,T −

1
2m

)
d

−→ N(0, 1),

where {h̃m,l} is the wavelet filter used in the construction of Êm,T and

Hm
((Lm−1)×1)

≡

⎡⎢⎢⎢⎢⎢⎣
h̃m,1 h̃m,2 h̃m,3 · · · h̃m,Lm−1

h̃m,2 h̃m,3 · · · h̃m,Lm−1 0
h̃m,3 · · · h̃m,Lm−1 0 0

...
...

...
. . .

...

h̃m,Lm−1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎣
h̃m,0

h̃m,1

h̃m,2
...

h̃m,Lm−2

⎤⎥⎥⎥⎥⎥⎦ ,

Ĉm
((Lm−1)(K+1)×(Lm−1))

≡

⎡⎢⎣ĉ1
. . .

ĉLm−1

⎤⎥⎦ , ĉj
((K+1)×1)

≡

[
1

−S−1
XX µ̄j

]
,

the (j, k) block of Ψ̂m
((K+1)×(K+1))

≡

⎡⎢⎢⎢⎢⎣
1
T

T∑
t=1

û2
t ût−jût−k

1
T

T∑
t=1

X ′

t û
2
t ût−j

1
T

T∑
t=1

Xt û2
t ût−k

1
T

T∑
t=1

û2
t XtX ′

t

⎤⎥⎥⎥⎥⎦ ,

s2 ≡
1

T − K

T∑
t=1

û2
t , SXX =

1
T

T∑
t=1

XtX ′

t , µ̄j ≡
1
T

T∑
t=1

Xt ût−j.

Combining these multiple-scale tests to gain power against a
wide range of alternatives, we derive the asymptotic joint distri-
bution of these tests as follows.

Theorem 3.2. If Assumptions 2.1, 2.2, 2.3 and 3.1 are satisfied, then
the vector√

Ts4

4

(
Ê1,T −

1
21 , Ê2,T −

1
22 , . . . , ÊN,T −

1
2N

)′
d

−→ N(0, Υ ′ΨNΥ ),

where the mth column of Υ
((LN−1)(K+1)×N)

is CmHm
((Lm−1)(K+1)×1)

followed by

0
((LN−Lm)(K+1)×1)

.
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