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h i g h l i g h t s

• We extend the basic SV model with mixed frequency information which is referred to as the MF-SV model.
• The MCMC method is discussed to realize the parameter estimation by a mixture approximation model.
• The MF-SV model can significantly identify the time-varying stable component.
• The MF-SV model can improve the in-sample fitting results that outperform the basic SV model.
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a b s t r a c t

This paper extends the SV model to the MF-SV model with mixed frequency information. We show
the small sample properties with Monte Carlo experiment with MCMC method. The MF-SV model
outperforms the basic SV model in the in-sample performance.

© 2017 Published by Elsevier B.V.

1. Introduction

The stochastic volatility (SV) model has been applied to asset
pricing (Harvey and Shephard, 1996), particularly derivative pric-
ing (Bansal et al., 2014) since the SV model match discretization
of the diffusion process of asset returns (Zheng and Zuo, 2013).
In this model, the volatility is driven by a single ‘‘unobservable
component’’ factor which ignores the linkage between volatility
and other important factors. Instead, numerous studies show that
many factorsmay influence volatility,which leads to the decompo-
sition of volatility components, then specify the component volatil-
ity model.

∗ Corresponding author.
E-mail addresses: syh@swufe.edu.cn (Y. Shang), lzccdiudiu@163.com (L. Liu).

Component volatility models usually decompose the volatility
into a long-term and a short-term component (Engle et al., 2013).
The long-term component is mainly affected by low-frequency
variables (Engle et al., 2013; Zheng and Shang, 2014). In con-
trast, some high-frequency factors, such as liquidity shocks, con-
tribute to the short-term component. Obviously, different fre-
quency variables need to be considered when constructing a
component model. Engle and Rangel (2008) firstly propose a
Spline-GARCH model and Engle et al. (2013) further propose the
GARCH-MIDAS (mixed-frequency data sampling) model. The MI-
DAS approach is used to help low frequency variables predict long-
term components. Unfortunately, the mixed-frequency volatility
model is limited to GARCH family model but none to the SV family
model.

This paper decomposes the volatility into a stochastic compo-
nent and a stable component in the framework of SV model. As
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a result, we specify a mixed frequency SV (MF-SV) model which
is a generalized form of the traditional SV model. Similar to the
GARCH-MIDAS model, the stable component is characterized by
a low-frequency variable via the MIDAS method. Meanwhile, the
stochastic component keeps the same form as traditional SV mod-
els.

Researchers havedevelopedMarkov chainMonteCarlo (MCMC)
algorithms for estimating the parameters since the likelihood func-
tion for SV models is intractable (see, Nakajima and Omori, 2009).
We study the MCMCmethod to estimate the parameters of MF-SV
model. This paper conducts Monte Carlo experiments to evaluate
the finite sample performance of the MF-SV model. We also inves-
tigate the estimate results of MF-SV model via empirical study.

2. Methodology

2.1. MF-SV model

Let ri,t be the log return on day i duringmonth (quarterly) t . We
assume that there are Nt days in period t . Referring to Engle and
Rangel (2008), we write the level equation as follows

ri,t = σi,t
√
τtεi,t (1)

where σi,t
√
τt represents volatility, which has two components,

σi,t and τt . The error term εi,t |ψi−1,t ∼ N(0, 1).
Engle and Rangel (2008) have point out that the volatility

component τt is a secular component influenced by low-frequency
volatility. The component σi,t is related to short-lived factors.
Similarly, we interpret τt as a stable component and σi,t as a
stochastic component. The level equation can be rewritten as

ri,t = exp

hi,t

2
+

log(τt)
2


εi,t (2)

where hi,t ≡ log(σ 2
i,t).

According to the basic SV model, let yi,t = log(r2i,t), ξi,t =

1.27 + log(ε2i,t), then we have

yi,t = −1.27 + hi,t + log(τt)+ ξi,t (3)

where ξi,t follow the log(χ2
1 ) distribution with one degree of

freedom, zero mean, and variance π2/2.
The stochastic component can be expressed by the following

equation:

hi,t = φhi−1,t + ηi,t (4)

where ηi,t ∼ N(0, σ 2), ξi and ηi are independent of each other.
The stable component τt is described by some low frequency

variable such as realized volatility (RV t =
Nt

i=1 r
2
i,t ) over a

monthly or quarterly horizon (Engle et al., 2013). We set τt with
log form by smoothing realized volatility in the spirit of the MIDAS
regression.

log τt = m + θ

P
p=1

ϕp(ω1, ω2)RV n
t−p (5)

where RV n
t−p is the normalized log low frequency realized

volatility.
P is defined asMIDAS lag yearwhich indicates themaximum lag

order in Eq. (5). Theweighting function ϕp(ω1, ω2) is the ‘‘Beta’’ lag
structure.

ϕp(ω1, ω2) =
f (p/P, ω1, ω2)

P
p=1

f (p/P, ω1, ω2)

(6)

Table 1
10-component mixture of Gaussian distributions.

w Pr(w = k) mk ν2k

1 0.0061 1.9268 0.1127
2 0.0478 1.3474 0.1779
3 0.1306 0.7350 0.2677
4 0.2067 0.0227 0.4061
5 0.2272 −0.8517 0.6270
6 0.1884 −1.9728 0.9858
7 0.1205 −3.4679 1.5747
8 0.0559 −5.5525 2.5450
9 0.0158 −8.6838 4.1659

10 0.0012 −14.6500 7.3334

where

f (x, a, b) =
xa−1(1 − x)b−1Γ (a + b)

Γ (a)+ Γ (b)
. (7)

Eqs. (3)–(7) form the MF-SV model. Compared with the tradi-
tional SV model, we find that when the component τt is some con-
stant value, the MF-SVmodel degenerates into the basic SVmodel.

2.2. The MCMC method

This paper uses the Bayesian method to realize the parameter
estimation. Referring to Nakajima and Omori (2009), we need to
approximate the log(χ2

1 ) distribution by a K -component mixture
of Gaussian densities with a mixture approximation model.

Let y∗

i,t = yi,t − log(τt), and then we obtain the following
equation

y∗

i,t = hi,t + ξ ∗

i,t (8)

where f (ξ ∗

i,t) =
K

k=1 qkfN(ξ
∗

i,t |mi,t , ν
2
i,t) means using K -

component mixture of Gaussian densities to approximate the
distribution of log(χ2

1 ), and qk is the weight of the normal
distribution. The mixture approximation model can be written as
the linear Gaussian state space model:

y∗

i,t
hi,t+1


=


hi,t
φhi,t


+


ξ ∗

i,t
ηi,t


(9)

ξ ∗

i,t
ηi,t


|st = k


L
=


mk + ν2k z

1
i,t

z2i,t


(10)

where both z1i,t and z2i,t follow the standard normal distribution.
Referring to Durbin and Koopman (2002), Nakajima and Omori

(2009), MCMC method can be realized via the following blocks:

(1) Initialize parameters φ, σ ,m, θ, ω and state process {si}Ti=1,

{hi}
T
i=1;

(2) Given parameters m, θ, ω, state process {si}Ti=1, {hi}
T
i=1, data

sample y∗

i,t , sample φ, σ with the M–H (Metropolis–Hastings)
algorithm. The prior distribution of φ is the beta distribution
and that of σ is the inverse gamma distribution;

(3) Given φ, σ , state process {si}Ti=1, data sample y∗

i,t , construct
the augmented Kalman filter and sample {hi}

T
i=1 using the

simulation smoother;
(4) Given φ, σ ,m, θ, ω, state process {hi}

T
i=1, data sample y∗

i,t ,
sample {si}Ti=1 using a probability mass function;

(5) Givenφ, σ , state process {hi}
T
i=1, samplem, θ, ω using theM–H

algorithm.
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