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h i g h l i g h t s

• We prove that the minimum dimension for non-existence of optima in continuous time is 2.
• This confirms a conjecture advanced in 1976 by Brock and Haurie.
• We work in the framework of a two-dimensional optimal growth model à la Bruno (1967).

a r t i c l e i n f o

Article history:
Received 14 September 2016
Received in revised form 8 December 2016
Accepted 16 December 2016
Available online 24 December 2016

JEL classification:
C61
D90

Keywords:
Optimal growth
Overtaking
Continuous time models

a b s t r a c t

We report an example of a two-dimensional undiscounted convex optimal growth model in continuous
time in which, although there is a unique ‘‘golden rule’’, no overtaking optimal solutions exists in a full
neighborhood of the steady state. The example proves, for optimal growthmodels, a conjecture advanced
in 1976 by Brock and Haurie that the minimum dimension for non-existence of overtaking optimal
programs in continuous time is 2.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For the class of undiscounted convexmodels of optimal growth,
it has been known since (Gale, 1967) that existence of optimal (in
the sense of overtaking) solutions cannot be proved in general if the
‘‘golden rule’’ capital stock is not unique. Soon, however, it turned
out that uniqueness is not sufficient for the existence of an optimal
solution. (Brock, 1970), indeed, proved existence under this condi-
tion, but used the weaker optimality criterion know as maximality
(or weak overtaking optimality) and presented an example of a
maximal steady state that is not optimal. Peleg (1973) thenpointed
out that the same example can be used to prove non-existence of
optimal paths, implying that, without additional assumptions, it is
not possible to strength Brock’s existence theorem.

There are only few published examples of non-existence: the
Brock–Peleg one, one reported in Khan and Piazza (2010), one
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contained in a paper by Leizarowitz (1985) and finally the one pro-
vided in a paper by Fabbri et al. (2015).While the first two relate to
different two-sector one capital good discrete models, the last two
are in continuous time. Still, the two-dimensional (Leizarowitz,
1985) example is framed in reduced form, while that in Fabbri et
al. (2015), explicitly relating to a growth model, has an infinite-
dimensional state space. So, while it has been already established
that in discrete time non-existence is possible even with a one-
dimensional state space, it is not clear which is the minimum
dimension for non-existence for continuous time models.1 We
here report a new example showing that this minimum dimension
is 2. In otherwords, our example confirms the conjecture advanced
in Brock and Haurie (1976) p. 345 for optimal growth models:

We have not yet constructed an example where the steady state
x̄ is unique but no overtaking optimal program exists from some
x0 while a weakly overtaking optimal program exists from our x0.

1 It is known (see e.g. Example 4.1 of Leizarowitz, 1985 or Example 4.4 of Carlson
et al., 1991) that optimal trajectories exist for continuous time scalar systems.
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Such an example will take somework to construct because it seems
that the state space will have to be two dimensional whereas in
discrete time as shown in Brock (1970) we can get by with a one-
dimensional output space.

2. The model

We consider the (n + 1)-sector single-technique case of the
discrete capital model introduced in Bruno (1967). In the system,
there are n + 1 commodities: n pure capital goods and a pure
consumption good. The services of a primary factor of production,
labor, are combined with the services of the stocks of capital to
produce the n+1 commodities. Technology is of the discrete type,
and only n + 1 processes, one for each good, are available.

The superscript T denotes transposedmatrices, ⟨·, ·⟩ represents
the internal product in Rn. A unit of the jth capital good needs
to be produced aij units of the ith capital good and ℓj units of
labor, whereas one unit of the consumption good needs αi units
of the ith capital good and ℓc units of labor, so that the technol-
ogy is described by a matrix and a vector of capital coefficients
A =

[
aij

]n
i,j=1, α = [α1, α2, . . . , αn]T , and a vector and a scalar

of labor input coefficients ℓ = [ℓ1, ℓ2, . . . , ℓn]T , ℓc . Let k(t) =

[k1(t), k2(t), . . . , kn(t)]T represent the stock of capital goods at a
given time t ≥ 0, and x(t) = [x1(t), x2(t); ..., xn(t)]T , and xc(t)
be the intensities of activation of the production processes at that
time, chosen by the social planner. Assuming that the flow of
new capitals is accumulated and that capitals decay at a constant
depreciation rate δ > 0 (the same for all capital goods), and that
the initial state of the system is k0 ≥ 0, then the state equation is
given by the n-dimensional system

k̇(t) = −δk(t) + x(t), t ≥ 0; k(0) = k0. (1)

Assume that the labor flow available at every t is constant and
normalized to 1, and that every unit of capital good instantaneously
provides one unit of production services. Then the production is
subject to the following set of constraints, holding for all t ≥ 0:

Ax(t) + xc(t)α ≤ k(t), (2)

⟨ℓ, x(t)⟩ + xc(t)ℓc ≤ 1, (3)

x(t) ≥ 0, xc(t) ≥ 0. (4)

Assuming a linear utility and a discount factor ρ ≥ 0, the problem
is that of maximizing

J(x, xc, k0) =

∫
+∞

0
e−ρtxc(t) dt (5)

over the set of admissible controls

X (k0) = {(x, xc) ∈ L1loc(0, +∞;Rn+1
+

) : (1)–(4) hold at all t ≥ 0}.

Remark 2.1. Since from (1) one derives k(t) = e−δtk0 +∫ t
0 e−δ(t−s)x(s)ds, the solution k is in the space W 1,1

loc (0, +∞;Rn),
and trajectories k are always nonnegative. Moreover, if vector ℓ is
strictly positive, we may define c :=

(∑n
i=1ℓ

−2
i

)1/2
and check that

∥k(t)∥ ≤ ∥k0∥ + c/δ, ∀t ≥ 0, that is, trajectories are uniformly
bounded by a constant depending only on k0. □

Due to (3) and (4), when ρ > 0 the utility is finite for all
admissible controls but, on the contrary, when ρ = 0 it may be
infinite valued. We take into consideration the following criteria
of optimality.

Definition 2.2. A control
(
x∗, x∗

c

)
inX (k0) is optimal (or overtaking

optimal) at k0 if

lim inf
T→+∞

∫ T

0
e−ρt (x∗

c (t) − xc(t)) dt ≥ 0

for every control (x, xc) inX (k0). If k∗ is the trajectory starting at k0
and associated to (x∗, x∗

c ), then (k∗
; (x∗, x∗

c )) is an optimal couple.

Definition 2.3. A control
(
x∗, x∗

c

)
in X (k0) is maximal (or weakly

overtaking optimal) at k0 if

lim sup
T→+∞

∫ T

0
e−ρt (x∗

c (t) − xc(t)) dt ≥ 0

for every control (x, xc) inX (k0). If k∗ is the trajectory starting at k0
and associated to (x∗, x∗

c ), then (k∗
; (x∗, x∗

c )) is a maximal couple.

Every optimal control is maximal but the vice versa is false in
general.

We here list the assumptions that will be used throughout the
paper.

Hypothesis 2.4.

(1) The matrix A is semipositive, that is, aij ≥ 0 for all i and j and
there is at least a strictly positive element;

(2) The vector α is semipositive, that is, α ≥ 0 and αi > 0 for at
least one i.

(3) The vector ℓ is positive, that is, ℓi > 0 for all i; also ℓc > 0.
(4) A is indecomposable.

For indecomposable technologies see e.g. Section A.3.2 in Kurz and
Salvadori (1995).

2.1. Golden rules

The aim of this section is to define golden rules, that is, sta-
tionary solutions supported by stationary prices. Some proper-
ties of Hamiltonian functions will prove useful for the arguments
developed afterwards. We define the current value Hamiltonian
associated to the problemas the function h : Rn

+
×R+×Rn

+
×R+ →

R given by h(k, λ, x, xc) = xc + ⟨λ, x − δk⟩ and the maximal value
Hamiltonian as

H(k, λ) = sup{h(k, λ, x, xc) : (x, xc) ≥ 0, Ax
+ xcα ≤ k, ⟨ℓ, x⟩ + xcℓc ≤ 1}. (6)

The maximization process through which H is computed, corre-
sponds to solving the following linear programming problem

max[⟨λ, x⟩ + xc] (7)

subject to

Ax + xcα ≤ k, ⟨ℓ, x⟩ + xcℓc ≤ 1, (x, xc) ≥ 0. (8)

which has feasible region

U(k) = {(x, xc) ∈ Rn
+

× R+ : (8) holds}.

The corresponding dual problem is

min[⟨q, k⟩ + w] (9)

subject to

λ ≤ ATq + w ℓ, 1 ≤ ⟨α, q⟩ + w ℓc, q ≥ 0, w ≥ 0, (10)

where (q, w) ∈ Rn
× R are dual control variables having the

meaning, respectively, of rental rates of capital goods and wage
rate (i.e., the multiplier associated to the constraint of availability
of labor). We denote the feasible region of the dual problem by

V (λ) = {(q, w) ∈ Rn
+

× R+ : (10) holds}.
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