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Abstract

This work describes a novel algorithm to identify laryngeal pathologies, by the digital analysis of the voice. It is based on Daubechies’
discrete wavelet transform (DWT-db), linear prediction coefficients (LPC), and least squares support vector machines (LS-SVM). Wavelets
with different support-sizes and three LS-SVM kernels are compared. Particularly, the proposed approach, implemented with modest computer
requirements, leads to an adequate larynx pathology classifier to identify nodules in vocal folds. It presents over 90% of classification accuracy
and has a low order of computational complexity in relation to the speech signal’s length.
� 2006 Published by Elsevier Ltd.
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1. Introduction

Discrete-time processing of recorded voice signals [1] can be
used to detect different acoustical characteristics that differenti-
ate between normal and pathologically affected human voices.
Pathologies related to the glottal tract are usually identified
through acoustic perceptual standards like breathness, hoarse-
ness and harshness [2–4]. However, due to the complex struc-
ture of the biological system for speech synthesis, pathologies
with harsh characteristics may be confused with those percep-
tually defined as hoarse [5]. The turbulence in glottal flow, re-
sulting from malfunction of the vocal folds, can be quantified
by the noise in spectral components of speech [6]. Pathologies
caused by soft or incomplete closure of the glottis, as nodules
in vocal folds, are often associated with high-frequency noise
[7,8]. Thus, we intend to analyze this particular high frequency
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characteristic of pathologically affected voices in order to dis-
tinguish them from the normal ones.

Most of the recent computer-based algorithms for laryngeal
pathology detection described in the literature are based on
wavelets, fractals or neural maps and networks [9,10]. Neu-
ral maps and networks cover over 95% of the existing tech-
niques, some of them reaching almost 100% accuracy in the
results when a good procedure is used to train the classifiers,
but, sometimes, with a high computational order of complex-
ity in relation to the signal’s length. Usually, in this last kind
of classifier, the voices are clusterized in respect to the follow-
ing parameters: formant frequencies, pitch period and its devi-
ations, stability of pitch period during vowel phonation, degree
of dissimilarity of the shape of the pitch, low-to-high energy
ratio (LHER), noise-to-harmonics ratio (NHR) and harmonics-
to-noise ratio (HNR). Fractal-based classifiers have about 90%
classification accuracy, but they usually detect only some par-
ticular pathologies, like Friedreich’s ataxia for example [11,12].
Best-basis wavelet classifiers produce about 85% of classifica-
tion accuracy.

This work proposes an algorithm, with a low order of compu-
tational complexity, to identify patients with nodules [13] in vo-
cal folds. It is based on Daubechies’ discrete wavelet transform
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(DWT-db) [14–16], linear prediction code (LPC) [1], and least
squares support vector machines (LS-SVM) [17–20], the lat-
ter being a statistical learning technique for training classifiers.
LS-SVMs were originally created for two-group classification
problems using a hyper-linear separating plane. The proposed
algorithm produces the output, the results of the classification,
much faster than other related methods. In terms of accuracy, it
advances the state-of-the-art classifiers [10] for nodule pathol-
ogy detection.

This article is organized as follows: Section 2 presents a brief
review on DWT-db and LS-SVM, Section 3 details the proposed
algorithm, and Section 4 describes the methodology and tests.
Lastly, Section 5 lists the results and Section 6 presents the
conclusions.

2. A review on DWT-db and LS-SVM

2.1. DWT-db

The discrete wavelet transform (DWT), whose main idea is
the process of multi-resolution analysis (MRA) proposed by
Mallat [15], is one of the most appropriate techniques to make a
joint time-frequency analysis of discrete-time signals. It allows
one to find the time-support of frequencies. Considering �f as
the discrete-time signal under analysis, it is decomposed in the
sum of two other vectors, �A and �D, called, respectively, trend
and fluctuation [21],

�f = �A+ �D, (1)

where

�A=
n/2−1∑
k=0

〈 �f , �vk〉 �vk and �D =
n/2−1∑
k=0

〈 �f , �wk〉 �wk .

Then, for a discrete-time signal �f containing n samples:

• �A is the projection of �f onto a subspace V, with a basis
containing n/2 vectors;
• �D is the projection of �f onto a subspace W, with a basis

containing n/2 vectors;
• V ⊥ W ↔ �A ⊥ �D;
• �vi ⊥ �wi ↔ 〈 �vi, �wi〉 = 0.

The process above is a one-level decomposition. When
n is an integer power of 2, this process can be repeated
j = log(n)/ log(2) times. To do that, the resulting signal �A
is decomposed one or more times, creating a decomposition
of j levels. This is the main idea behind the MRA analysis:
decomposing a signal in several levels of resolution (Eq. (2)):

�f = �Aj +
j∑

i=1

�Di . (2)

Thus,

• �Aj is the projection of �f onto a subspace Vj , with a basis
containing n/2j vectors;

• �Di is the projection of �f onto a subspace Wi , with a basis
containing n/2i vectors;
• Vj ⊥ Wj ↔ �Aj ⊥ �Dj ;
• �vi,j ⊥ �wi,j ↔ 〈 �vi,j , �wi,j 〉 = 0.

In other words,

f [n] =
n/2j−1∑

k=0

Hj,k[n]�j,k[n] +
j∑

t=1

n/2j−1∑
k=0

Gt,k[n]�t,k[n],

(3)

where

• �[n] and �[n] form a Riezs basis [15] to write signal f;
• �[n]=∑

k hn�[2n−k], defined recursively by dilations and
translations of itself, is called scaling function [15];
• �[n]=∑

k gn�[2n−k], defined recursively, is called wavelet
function and is orthogonal to the scaling function;
• Hj,k[n] = 〈f, �j,k[n]〉;
• Gt,k[n] = 〈f, �t,k[n]〉;
• {0} ← · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · → L2;
• if f [n] ∈ Vj → f [2n] ∈ Vj+1;
• Vj+1 = Vj ⊕Wj ;
• the hk coefficients form a low-pass filter;
• the gk coefficients form a high-pass filter;
• the hk and gk coefficients form the analysis filter bank;
• a filter with k coefficients is called a filter of support k.

In practice, to compute the DWT, the coefficients of the signal
under analysis, f [ ], are convolved both with the low-pass filter,
h[ ], and the high-pass filter, g[ ], as follows:

ylow-pass[ ] = f [ ] ∗ h[ ]

=
M−1∑
k=0

h[k]f [2n− k], 0�n� N

2
, (4)

yhigh-pass[ ] = f [ ] ∗ g[ ]

=
M−1∑
k=0

g[k]f [2n− k], 0�n� N

2
, (5)

where ylow-pass and yhigh-pass are the outputs, M is the length of
signals h and g, N is the length of signal f, and ∗ denotes the
discrete-time convolution.

In each level of decomposition, there is both a down-
sampling by 2 of the transformed signals and a wrap-around
process [15], because the convolutions above are, in fact, filters
that allow a half-band of the original signal to pass, according
to Nyquist rate [1]. It is not the goal of this work to detail all
of the properties, but there are three special properties of a
wavelet transform that are used in this work. They are:

• Signal energy is defined as the scalar value E in Eq. (6):

E =
N−1∑
n=0

f [n]2, (6)

N being the length of signal f;
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