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a b s t r a c t

We examine the impact of behavioral noise on equilibrium selection in a hawk–dove game with a model
that linearly interpolates between the one- and two-population structures in an evolutionary context.
Perturbed best response dynamics generates two hypotheses in addition to the bifurcation predicted by
standard replicator dynamics. First, when replicator dynamics suggestsmixing behavior (close to the one-
population model), there will be a bias against hawkish play. Second, polarizing behavior as predicted by
replicator dynamics in the vicinity of the two-population model will be less extreme in the presence of
behavioral noise. We find both effects in our data set.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Evolutionarymodels provide key insights for the understanding
of central aspects of strategic interactions. For instance, the mass-
action interpretation ofmixedNash equilibria emerges naturally in
the evolutionary context (Björnerstedt andWeibull, 1996; Young,
2011). The aggregate strategy of a population can be interpreted
as a mixed strategy even though each individual agent chooses
a pure strategy. Equilibrium selection is another cornerstone of
these models. It is possible to discern whether an equilibrium is
more or less likely to be selected depending on the structure of the
population (Friedman, 1991; Weibull, 1995).

The family of perturbed best response dynamics (PBR) can take
into account departures from the best-response paradigm, which
is not possible with the standard model of replicator dynamics.
The PBR models introduce a random component in the definition
of the best-response correspondences. Players are assumed to be-
have as myopic best responders—just as in replicator dynamics—
but with the additional feature that they may tremble in their
decisions (Blume, 1993). In the limit where the impact of the error
term approaches zero, the PBR predictions converge toward those
of replicator dynamics. However, for moderate levels of noise, PBR
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models can account for some behavioral patterns that deviate from
the standard approach (seeHofbauer andHopkins, 2005;Hofbauer
and Sandholm, 2002; Hopkins, 2002 for technical details).

In this note, we apply a PBR model to a hawk–dove game. The
hawk–dove game is a symmetric two-strategy game with three
Nash equilibria: a symmetric one in mixed strategies and two
asymmetric ones in pure strategies.

There are two common (and simplified) ways to implement
this interaction as a population game. In the one-population case,
the interaction only takes place between agentswithin the groups,
while in the two-population case, the interaction occurs exclusively
between the groups. Basic intuition in population games argues
that mixing behavior emerges when the game is played within the
population (one-population matching) because only symmetric
equilibria can survive. The polarized case is more likely to be
observed in the two-population matching (Oprea et al., 2011).

A recent experiment by Benndorf et al. (2016) relaxes the
assumptions for the matching discussed above by introducing a
coupled model. This allows to linearly interpolate between both
extreme structures (one- and two-population models) with a cou-
pling parameter κ ∈ [0, 1]. This parameter is a measure for the
relative importance of the interaction between the populations. In
a discrete analogy, it can also be interpreted as the probability that
an agent is matched with an agent from the other group. Note that
κ = 0 and κ = 1 correspond to the one- and two-population cases,
respectively. The coupledmodel unveils the transition regime from
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symmetric mixing to polarized behavior in pure strategies. Given
the payoff parameters in the experiment, replicator dynamics pre-
dicts symmetric mixed play with 2

3 of hawk for κ < 1
2 . A sudden

bifurcation occurs at κ =
1
2 such that one population plays pure

hawk and the other plays amixed strategywith 1
3 of hawk. Separa-

tion (difference in the share of hawk play) increasesmonotonically
with κ in the interval κ ∈ [

1
2 ,

2
3 ]. Finally, the system is fully

polarized for κ > 2
3 . The experiment by Benndorf et al. (2016)

largely confirms these predictions, but the authors also report
some subtle discrepancies between the data and the replicator
model.

In the present paper, we complement their analysis with the
study of logit response dynamics as a natural extension of the
standard replicator model.1 This is a common implementation of
a PBR model and assumes that the random component follows the
logistic distribution. The PBR model applied to our experimental
setting makes two predictions that go beyond the scope of the
best-response paradigm of replicator dynamics. First, the share of
hawk choices in the symmetric mixed equilibrium will be lower
than 2

3 . Second, PBR implies that the impact of the polarizing
forces on the behavior of the systemwill beweaker than suggested
by replicator dynamics. This effect has two interpretations (see
further explanation of the model below). The separation between
the two populations will be lower than predicted by replicator dy-
namics. An alternative perspective is that the value of the coupling
parameter κ for which the system transits from the mixed regime
to the asymmetric configuration will be higher than 1

2 . This noisy
decision rule accounts for the discrepancies between the standard
replicator predictions and the behavioral patterns observed in the
experiment.

2. PBR model

We consider two populations of players (X and Y ) in a two-
strategy environment. Let SX = {(s1, s2) : sX1 + sX2 = 1} such
that any point in it represents the share of each strategy among
population X (equivalent definition for population Y ). The pair
(x, y) gives the state of the systemwith x = sX1 and y = sY1 . Then, s

X
2

and sY2 are given by 1 − x and 1 − y, respectively.
We interpolate the play of the game between the one- and the

two-population models with a coupling parameter κ ∈ [0, 1].
Recall that when κ = 0, a player only participates in interactions
within her own population. If κ = 1, the player interacts only with
the agents of the other population. Intermediate values of κ cor-
respond to simultaneous interactions at the intra- and intergroup
level (Benndorf et al., 2016, Section 3). The instantaneous payoff
earned by a player in population X choosing strategy si for a given
state of the system (x, y) is πX (si; x, y) = (1 − κ)[πi1x + πi2(1 −

x)]+κ[πi1y+πi2(1−y)]whereπij are the elements of a 2×2 payoff
matrix.

According to the logit response function, a player in population
X who observes a choice profile in the populations (x, y), and given
the chance to revise the play, chooses action s1 with probability

pX (s1; x, y) =
1

1 + e−λ∆πX (x,y)
. (1)

∆πX (x, y) = πX (s1; x, y) − πX (s2; x, y) is the payoff advantage
(in population X) of strategy s1 over strategy s2. Analogous for Y .
The comparison of profits influences the dynamics of the system
weighted by λ ∈ [0, ∞). This parameter captures deviations from
the best response function. If λ = 0, the revision mechanism is
independent from the payoff structure of the game and the system

1 Traulsen et al. (2010) provide evidence supporting this method of strategy
updating in human behavior. Alós-Ferrer and Netzer (2010) and Zhuang et al.
(2014) characterize some theoretical long run properties of the model.

evolves toward an equal share of strategies in the populations.
When λ → ∞, PBR approaches replicator dynamics.

We define the action set S = {s1, s2} such that s1 corresponds
to strategy hawk, and s2 to dove. Then, the hawk–dove game in
matrix notation is

Π =

⎛⎜⎝a +
1
2
(v − c) a + v

a a +
1
2
v

⎞⎟⎠ . (2)

This game represents a conflict of cost c over a scarce resource of
value 0 < v < c , and a > 0 is an endowment of the players. With
these parameters (and the payoff function above) we obtain the
fitness function ∆πX (x, y) =

1
2 [v − c(x+κ(y− x))]. ∆πY is defined

analogously.
The logit response dynamics is given by the following system of

coupled differential equations:{
ẋ = pX (s1; x, y) − x
ẏ = pY (s1; x, y) − y, (3)

with pX and pY defined in (1). A rest point of (3) corresponds to the
logit quantal response equilibrium (McKelvey and Palfrey, 1995)
for the given value of the parameter λ.

We illustrate the predictions of the PBR model in Fig. 1. Panel
(a) contains several cuts of the stable manifold of (3) for different
values of the rationality parameter λ that show the shape of the
bifurcation as a function of κ . The prediction for λ = 0 is in-
dependent of the coupling condition and corresponds to uniform
randomization. When λ increases, the bifurcation diagram of the
system becomes closer to the prediction with replicator dynamics
the higher the value of λ.

For every sufficiently high value of the exponentλ (representing
low levels of noise in the best response correspondences of the
players), there exists a critical value κcrit such that the equilibrium
stability shifts from the mixed configuration toward a polarized
one. We compute κcrit as a function of λ in panel (b). This value
converges monotonically toward 1

2 when the PBR model degener-
ates in the replicator dynamics (λ → ∞). The same logic applies
to the share of the hawk choices in the populations for the regime
with low coupling (κ < κcrit). We illustrate in panel (c) how the
level of hawk play monotonically increases with λ and converges
to the mixed NE, v/c =

2
3 , when λ → ∞.

From this discussion, we see that the PBR model generates two
testable hypotheses about human behavior in the experiment:

H1. The share of hawk choices in the populations X and Y for
treatments with κ < 1

2 will be lower than v/c =
2
3 and higher

than 1
2 .

H2. The observed separation between populations (difference be-
tweenhawkplay in groupsX and Y ) for the treatmentwith κ = 0.6
will be lower than 5

6 .

The first hypothesis mirrors regular findings regarding mixing
behavior in the quantal response literature (Goeree et al., 2016),
but the second formulation deserves some explanation. Replicator
dynamics makes a sharp prediction concerning the location of the
splitting point (κcrit =

1
2 ). By contrast, the presence of noise in

the best response function shifts the location of the critical level
of coupling κcrit for which polarization begins. In the noisy model,
this point is generally higher than 1

2 for low levels of λ (more noise)
and decreases monotonically toward the replicator prediction as
λ → ∞. It is not possible to make an ex-ante point prediction
for λ and one cannot cover all possible values of κ as a treatment
variable. Therefore, the exact point κcrit cannot be directly observed
in an experiment; however, we can still identify the effect of the
possible upward shift of such a splitting point. For this, wemeasure
the separation between groups for κ = 0.6 (the first one that we
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