
Economics Letters 157 (2017) 107–111

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

On bootstrap validity for specification testing with many weak
instruments
Maximilien Kaffo a, Wenjie Wang b,*
a International Monetary Fund, 700 19th St NW, Washington, DC 20431, USA
b Graduate School of Social Sciences, Hiroshima University, 1-2-1 Kagamiyama, Higashihiroshima, 7398525, Japan

h i g h l i g h t s

• We show bootstrap validity for the J test and Anderson–Rubin test under many/many weak instruments.
• The bootstrap does not require an a priori choice of asymptotic framework.
• Monte Carlo simulation shows that the bootstrap has a good finite-sample performance under many/many weak instruments.
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a b s t r a c t

This paper studies the asymptotic validity of bootstrapping the J test of over-identifying restrictions
and the Anderson–Rubin (AR) test under many/many weak instrument sequences. We show that the
(residual-based) bootstrap consistently estimates the limiting distributions of interest under these
asymptotic frameworks. Interestingly, such bootstrap validity holds even if the bootstrap cannot mimic
well certain important properties in the model. In addition, the studied bootstrap procedures are easy
to implement in practice because they do not require an a priori choice between the conventional
asymptotics and the many/many weak instrument asymptotics. Monte Carlo simulation shows that the
bootstrap techniques provide a more reliable method to approximate the null distribution of the J and AR
test statistics under many/many weak instruments.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The conventional asymptotic theory often provides a poor
approximation to the finite-sample distribution of instrumental
variable (IV) estimators and test statistics, especially with weak
instruments (Staiger and Stock, 1997) or many instruments
(Bekker, 1994; Chao and Swanson, 2005). Despite the large liter-
ature on estimation with many/many weak instruments, the liter-
ature on corresponding tests remains relatively sparse. Anatolyev
and Gospodinov (2011, henceforth AG) propose modifications of
the J test of overidentifying restrictions and the Anderson–Rubin
(AR) test so that these tests can be robust to many instruments.

In this paper, we study the bootstrap as an alternative inference
method for the J andAR tests undermany/manyweak instruments,
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and show the bootstrap validity. Interestingly, such validity holds
even if the bootstrap cannot mimic well certain important proper-
ties of the IV model. Simulations show that the bootstrap provides
a more reliable method for the J and AR tests.

2. Model, assumptions and test statistics

We consider a standard linear IV regression given by

y = Xβ + ϵ, (1)

X = ZΠ + V , (2)

where y andX are ann×1vector and ann×kmatrix of observations
on the endogenous variables, respectively, and Z is an n× lmatrix
of observation on the instruments,whichwe treat as deterministic.
Alternatively, the results that follow can be interpreted as being
conditional on Z . ϵ and V are an n × 1 vector and an n × k matrix
of random disturbances, respectively. Denote PZ = Z(Z ′Z)−1Z ′ and
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MZ = In − PZ , where In is an identity matrix with dimension n. The
model and data are assumed to satisfy the following conditions.

Assumption 1. The errors ηi = (ϵi, V ′

i )
′ are i.i.d. for i =

1, . . . , nwithmean zero and positive definite variancematrixΣ =(
σϵϵ σ ′

vϵ
σvϵ Σvv

)
. ϵi and Vi have finite fourth moments.

Assumption 2. As n → ∞, λn = l/n → λ for some constant λ
satisfying 0 < λ < 1. There exists a non-decreasing sequence of
positive real numbers rn such that, as n → ∞, rn/n → κ for some
constant κ , with 0 ≤ κ < ∞, and such that Π ′Z ′ZΠ/rn → Q ,
where Q is a positive definite matrix. In addition,

√
l/rn → 0 as

n → ∞.

Assumption 2 allows l to be a nontrivial fraction of the sample
size. Moreover, rn can be interpreted as the rate at which the con-
centration parameter, Σ−1/2

vv Π ′Z ′ZΠΣ
−1/2
vv , grows as n increases.

Thus, one can characterize the quality of instruments by the order
of magnitude of rn. In particular, the case rn = n corresponds to the
many (strong) instrument asymptotics in Bekker (1994), and the
case rn < n corresponds to themanyweak instrument asymptotics
in Chao and Swanson (2005).

Assumption 3. As n → ∞, n−1∑n
i=1|zi(Z

′Z)−1zi − λ| → 0.

Assumption 3 requires that the diagonal elements of PZ do
not exhibit variation asymptotically; i.e., are asymptotically non-
stochastic. Anatolyev and Yaskov (2017) have systematically stud-
ied this assumption, and provided specific exampleswhere it holds
or fails. In particular, they show that situations with indicator
instruments of equal group sizes, with independent instruments
(including Gaussian), with instruments drawn from a log-concave
distribution, with instruments distributed according to Gaussian
copula, or with instruments following a factor model belong to the
asymptotically nonstochastic case. On the other hand, situations
with indicator instruments of unequal group sizes, or with dummy
instruments (both stand-alone and those that interact with other
instruments) lead to nontrivial asymptotic variation in diagonal
elements, and Assumption 3 does not hold in these cases.

The widely used J statistic of overidentifying restrictions can be
defined as

J =
ϵ(β̂)′PZϵ(β̂)

σ̂ϵϵ(β̂)
(3)

where ϵ(β̂) = y−X β̂ , σ̂ϵϵ(β̂) = ϵ(β̂)′ϵ(β̂)/n, and β̂ is a consistent IV
estimator under many/many weak instrument sequences; e.g., the
limited information maximum likelihood (LIML) estimator or the
bias-corrected TSLS estimator. The second test statistic we study is
the Anderson–Rubin (AR) statistic forH0 : β = β0, which takes the
following form

AR =
ϵ(β0)′PZϵ(β0)

1
n−lϵ(β0)′MZϵ(β0)

(4)

where ϵ(β0) = y − Xβ0.
Under the standard fixed l asymptotics, J is distributed asχ2(l−

k) and AR is distributed as χ2(l) under the null; we reject when J >

qχ2(l−k)
α andAR > qχ2(l)

α . However, they are no longer validwhen the
number of instruments becomes large. To solve this problem, AG
propose corrected tests that are valid under Bekker (1994)’s many
(strong) instrument asymptotics. Specifically, the corrected J test
rejects when

J > qχ2(l−k)
Φ(

√
1−λΦ−1(α))

(5)

and the corrected AR test rejects when

J > qχ2(l−k)
Φ(Φ−1(α)/

√
1−λ)

(6)

where Φ(x) is the standard normal cumulative distribution func-
tion. Interestingly, the limiting distributions derived in their paper
also hold under many weak instrument asymptotics.

Corollary 2.1. Suppose that Assumptions 1–3 holds. Then,
√
l
(
J
l
− 1

)
→

d N (0, 2(1 − λ))

and under H0 : β = β0,
√
l
(
AR
l

− 1
)

→
d N (0, 2/(1 − λ)) .

Therefore, the corrected tests in (5)–(6) remain valid evenunder
many weak instruments. However, we find in simulations that
the asymptotic approximation may become less correct when the
instruments are relatively weak.

3. Bootstrap J and AR tests with many/many weak instruments

We study the bootstrap as an alternative method, and show
the bootstrap validity under many/many weak instruments. We
consider two residual-based procedures: the standard bootstrap
and the efficient bootstrap in Davidson and MacKinnon (2008),
which are carried out as follows:

Step 1: The residuals are obtained as:

ϵ(β̂) = y − X β̂

V̂ = X − ZΠ̂

where Π̂ = (Z ′Z)−1Z ′X for the standard bootstrap and Π̂ =

(Z ′Z)−1Z ′

(
X − ϵ(β̂) ϵ(β̂)′MZX

ϵ(β̂)′MZ ϵ(β̂)

)
for the efficient bootstrap.

Step 2:
(
ϵ(β̂), V̂

)
are re-centered to yield

(
ϵ̃, Ṽ

)
. Then, (ϵ∗, V ∗)

are drawn from the empirical distribution function of
(
ϵ̃, Ṽ

)
.

Step 3: We set

y∗
= X∗β̂ + ϵ∗

X∗
= ZΠ̂ + V ∗

Step 4: Obtain ϵ∗(β̂∗) = y∗
−X∗β̂∗, where β̂∗ is computed using

the bootstrap data. Then, we construct the bootstrap test statistic

J∗ =
ϵ∗(β̂∗)′PZϵ∗(β̂∗)

σ̂ ∗
ϵϵ(β̂∗)

(7)

where σ̂ ∗
ϵϵ(β̂

∗) = ϵ∗(β̂∗)′ϵ∗(β̂∗)/n. For the bootstrap AR test, we let

AR∗
=

ϵ∗′PZϵ∗

1
n−lϵ

∗′MZϵ∗
(8)

where ϵ∗ is generated in Step 2. Note that for the AR test, one may
also generate the bootstrap d.g.p. under the null H0 : β = β0 by
replacing β̂ with β0 in Step 1.

Step 5: Repeat Steps 1–4 B times, and compute the bootstrap P
values p̂∗

J = B−1∑B
j=1I(J

∗

j > J) and p̂∗

AR = B−1∑B
j=1I(AR

∗

j > AR),
where I(·) is the indicator function. We reject the null hypothesis
if the bootstrap P value is smaller than α.

The following result states the bootstrap validity for the tests
under many/many weak instruments.

Theorem 3.1. Suppose that Assumptions 1–3 holds. Then,

supx∈R
⏐⏐P∗

(
J∗ ≤ x

)
− P (J ≤ x)

⏐⏐ →p 0

and under H0 : β = β0,

supx∈R
⏐⏐P∗

(
AR∗

≤ x
)
− P (AR ≤ x)

⏐⏐ →p 0

where P∗ denotes the probability measure induced by the bootstrap
procedures.
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