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h i g h l i g h t s

• A summary is given for the Nash and Kalai–Smorodinsky solutions to the bargaining problem.
• An account is given for the precise conditions under which the two solutions coincide.
• In normalized situations, these solutions coincide only when they satisfy a number of notions of fairness.
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a b s t r a c t

In 1950, John Nash gave an elegant solution to the bargaining problem using his somewhat controversial
IIA axiom. Twenty-five years later, Ehud Kalai and Meir Smorodinsky gave a different solution replacing
the IIA condition with their own Monotonicity condition. While the two solutions obviously coincide
under certain conditions (e.g. when the problem is symmetric), they do not in general agree. This paper
presents a complete account of the precise conditions under which the two solutions coincide.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In interpersonal interactions, business negotiations, intergov-
ernmental diplomacy, and in a wide variety of other contexts,
notions of fairness play an essential role. In general, it is obviously
quite difficult to determine what is a fair outcome to a, interaction.
Even in situations where calculating the benefits gained for each
side in an interaction is reasonably easy, the answer to what
fairness means is still not necessarily clear.

In his 1950 paper, The Bargaining Problem (Nash, 1950), John
Nash gave an axiomatic account of fairness in such scenarios.
According to this approach, for any bargaining situation, one could
determine a single fair bargain (or set of equivalent fair bargains).
While the axioms for this solution seem reasonable, one in particu-
lar, the independence of irrelevant alternatives, came under some
criticism. Partly as a result of this criticism, in 1975 Ehud Kalai and
Meir Smorodinsky presented a new solution to the problemwhich
avoided the IIA axiom entirely (Kalai and Smorodinsky, 1975).

These two solutions will yield the same bargain in certain sit-
uations, and different bargains in others. Clearly the two accounts
of fairness differ not only philosophically, but practically as well.
Determining when the two will agree and disagree can help us
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differentiate between those situations in which what is fair is in
a sense obvious and those in which fairness is harder to pin down.
This in turn can illuminate the practical implications of differing
notions of fairness and whether our intuitions about fairness are
reflected in the given axioms.

2. Formulation of the problem

A two-person bargaining situation can be represented as a pair
(a, S), where S is a subset ofR2 and a = (a1, a2) is a point in S called
the base point or disagreement point. Every point x = (x1, x2) ∈ S
represents the utilities, to agents 1 and 2 respectively, of reaching
a particular bargain, with the base point representing the utilities
received if the negotiations are abandoned. Every pair (a, S) must
satisfy the following properties:

∃x ∈ S such that xi > ai for i = 1, 2. (Bargaining Incentive)
S is convex. (Convexity)
S is compact. (Compactness)
∀x ∈ S, ai ≤ xi, for i = 1, 2. (Individual Rationality)

Bargaining Incentive reflects the natural assumption that both
agents would only engage in a bargaining situation in which they
each stand to gain. If x = (x1, x2) and y = (y1, y2) are the utilities
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associated to two potential bargains, any probability combination
of the two bargains would itself be a bargain, yielding utilities
px + (1 − p)y for some p ∈ [0, 1], giving the convexity of S.
Compactness in this context means that S is closed and bounded,
which is reasonable from the realistic features of many situations
to which this work would apply. Individual Rationality reflects the
idea that no player would agree to a bargain in which he is worse
off than he would be not bargaining at all. Individual Rationality is
not assumed by Nash, though all of his results still hold with this
included, as it only limits the space of possible bargaining pairs.
Again this is a natural requirement, as no player would knowingly
agree to a deal which gives a worse utility than disagreement.

Let U be the set of all bargaining pairs (a, S) with the above
properties. A solution to the bargaining problem is a function f :

U → R2 such that f (a, S) = (f1(a, S), f2(a, S)) ∈ S. In general, f is
meant to give the ‘‘fair’’ agreement for the two agents.

3. Normalized bargaining pairs

We will only consider solutions that are invariant under
affine transformations of utility, i.e. transformations of the form
A(x1, x2) = (c1x1+d1, c2x2+d2) for c1, c2, d1, d2 ∈ R.2 This means
first that regardless the original base point a, we may consider
without loss of generality the bargaining pairs (0, S) (by translating
the original base point). Further, let

b1(S) = sup
{
x1 ∈ R

⏐⏐⏐ there exists x2 ∈ R, (x1, x2) ∈ S
}

b2(S) = sup
{
x2 ∈ R

⏐⏐⏐ there exists x1 ∈ R, (x1, x2) ∈ S
}

b(S) = (b1(S), b2(S)).

As before, we may consider only bargaining pairs (0, S) such that
b(S) = (1, 1) (by scaling, we can still keep the base point (0, 0)).

A bargaining pair is called normalized if a = (0, 0) and b(S) =

(1, 1).

4. Nash solution η

Nash gives three axioms regarding properties that a solution
should satisfy, along with philosophical justifications.

N1 Pareto Efficiency3: For every bargaining pair (a, S), if x ∈ S
such that ∃y ∈ S with y1 > x1 and y2 > x2, then x ̸= f (a, S).

N2 Symmetry: If S is symmetricwith respect to the line x1 = x2,
then f (0, S) lies on the line x1 = x2.

N3 Independence of Irrelevant Alternatives (IIA): If (a, S) and
(a, T ) are bargaining pairs such that S ⊂ T and f (a, T ) ∈ S,
then f (a, S) = f (a, T ).

N1 reflects the assumption that each agent is interested inmax-
imizing her own utility. We assume that the players are equally
skilled at negotiating, thus N2. N3 has fallen under serious crit-
icism, including by Kalai and Smorodinsky (1975), but according
to the intuition given by Nash, if two rational individuals would
agree that f (T ) is fair if T were the set of possible bargains, then
they should be willing to agree to the same deal with a smaller set
S ⊂ T of bargains available to them.

Nash proved that there is a unique function, η, given below,
satisfying these three axioms.

η(a, S) = (η1, η2) where (η1, η2) ∈ S and
(η1 − a1)(η2 − a2) ≥ (x1 − a1)(x2 − a2) for any x ∈ S.

2 Nash assumes this as a property of the utilities defined for each player. Kalai
and Smorodinsky give this as an axiom for a solution. Significant philosophical
objections have been brought up regarding this assumption including by Rubinstein
et al. (1992), but for the purposes that follow, we may ignore these issues.
3 Kalai and Smorodinsky use the term ‘‘Pareto Optimality’’ for this condition.

5. Kalai–Smorodinsky solution µ

Kalai and Smorodinsky give a different set of axioms that a
solution must satisfy, motivated by issues raised regarding N3.
Before proceeding we introduce some additional notation.

Let gS(x1)

= sup
{
x2 ∈ R

⏐⏐⏐ x1 ≤ x′

1 and (x′

1, x2) ∈ S
}
(defined for x1 ≤ b1).

Intuitively, gS(x1) is the greatest utility the agent 2 can get if agent
1 gets at least x1. A similar function can be defined for agent 1, but
with symmetry, this is not necessary.

KS1 Pareto Efficiency: For every bargaining pair (a, S), if x ∈ S
such that ∃y ∈ S with y1 > x1 and y2 > x2, then x ̸= f (a, S).

KS2 Symmetry: Let T : R2
→ R2 be defined by T ((x1, x2)) =

(x2, x1). For every bargaining pair (a, S), f (T (a), T (S)) =

T (f (a, S)).
KS3 Invariancewith Respect to Affine Transformations of Utility:

If A : R2
→ R2, A(x1, x2) = (c1x1 + d1, c2x2 + d2) for

constants c1, d1, c2, and d2, then f (A(a), A(s)) = A(f (a, S)).
KS4 Monotonicity: If (a, S) and (a, T ) are bargaining pairs such

that b1(S) = b1(T ) and gS ≤ gT , then f2(a, S) ≤ f2(a, T ).

The Pareto axiom remains unchanged. The purpose of the Sym-
metry axiom is the same, though it is formulated differently. This
statement implies the Nash’s, though both solutions satisfy both
versions of the axiom. KS4 reflects the idea that if for any demand
agent 1 can make, the maximum possible utility of agent 2 in-
creases, then the utility for agent 2 under the solution should not
decrease. KS3 reflects an assumption about the nature of the utility
functions which define S, namely that they are determined up to
changes in scale.

Kalai and Smorodinsky also give a unique function µ which
satisfies this new set of axioms.

µ(a, S) = (µ1, µ2)
is the maximal point in S on the line through a and b(S).

6. Coincidence of η and µ

Kalai and Smorodinsky showed by example that η does not
satisfy KS4, so in general η ̸= µ (Kalai and Smorodinsky, 1975).
However, it is clear from the Symmetry axioms for both solutions
that the two will always coincide when S is symmetric about the
line x1 = x2. It is easy to build an example for which S is not
symmetric, but the two solutions are the same,meaning symmetry
alone will not predict coincidence.4

Example. Let S ′ be the convex hull of the points (0, 0), (1, 0),
(0, 1), (0.9, 0.9), (0.5, 1), and (1, 0.5). It is easy to check that
η(0, S ′) = µ(0, S ′) = (0.9, 0.9)

Let S be the convex hull of (0, 0), (1, 0), (0, 1), (0.9, 0.9) and
(0.5, 1) which is clearly not symmetric. S ⊂ S ′ both of which
contain η(0, S ′), so η(0, S) = η(0, S ′). Since b(S) = b(S ′) = (1, 1)
and the line segment between (0, 0) and (0.9, 0.9) is contained in
S, η(0, S) = η(0, S ′) = µ(0, S).

It turns out that there is a simple characterization of the prop-
erties of (a, S) for which η(a, S) = µ(a, S).5

To approach this question, it is sensible to first restrict our
attention to normalized bargaining pairs for the sake of simplicity.

4 Credit is due to Rann Smorodinsky for giving an example of such a bargaining
pair, different from the example included.
5 This question was brought up by Rohit Parikh of the CUNY Graduate Center,

who was instrumental in the completion of this work.



Download English Version:

https://daneshyari.com/en/article/5057768

Download Persian Version:

https://daneshyari.com/article/5057768

Daneshyari.com

https://daneshyari.com/en/article/5057768
https://daneshyari.com/article/5057768
https://daneshyari.com

