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HIGHLIGHTS

e We propose a discrete-response state space model with conditional heteroscedasticity.
e The proposed model is estimated using MCMC methods.
o The proposed model has better forecast performance than benchmarks that have only constant coefficients or constant variance.
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For parameter estimation, we design an efficient Markov chain Monte Carlo algorithm. We illustrate our
method with an empirical study on the federal funds rate target. The proposed model provides better
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1. Introduction

Generalized linear state space (GLSS) models for discrete-
response time series observations have been well studied in
Bayesian literature (West et al., 1985; Fahrmeir, 1992; Song, 2000;
Czado and Song, 2008; Stefanescu et al., 2009; Abanto-Valle and
Dey, 2014). This class of models consists of two processes. In the
first process, an observation or measurement equation defines
the conditional mean of a time series of discrete observations as
a nonlinear function (known as the inverse link function) of a
sequence of latent state variables. In the second process, a transi-
tion or state equation describes the (stationary or non-stationary)
dynamic process of the randomly time-varying state variables.
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GLSS models can capture, through a time-varying parameter
specification, the structural instability which may be present in
time series of macro(financial) variables. A second well-known
characteristic of (macro)financial time series is conditional het-
eroscedasticity. Researchers have highlighted the importance of
allowing for time-varying conditional variances when analyzing
discrete-response time series data (Hausman et al., 1992; Boller-
slev et al., 1992; Dueker, 1999). However, the Bayesian literature
on GLSS models has assumed homoscedastic errors so far.

In this paper, we extend the Bayesian literature on GLSS models
by introducing a new class of models, the generalized nonlinear
state space (GNLSS) models. The term “nonlinear” is justified by
the presence of conditional heteroscedasticity. In the context of our
empirical application we show that by accounting for conditional
heteroscedasticity we achieve an increase in the forecast perfor-
mance of GLSS models.
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In particular, we develop methods of Bayesian inference in
a state space mixed model with stochastic volatility (SV) (Tay-
lor, 1986) for ordinal-valued time series. The stochastic volatility
component accounts for some stylized facts of (macro)financial
time series such as volatility clustering, heavy tails and high-
peakedness. For the proposed ordinal-response model, the inverse
link function is assumed to be a normal cumulative distribution
function (c.d.f). The term “mixed” refers to the inclusion of both
constant and time-varying coefficients in the model. The parame-
ter transitions are captured by a random walk process.

The proposed model contributes also to the literature on
discrete-response time series models with conditional het-
eroscedasticity (Miiller and Czado, 2009; Hsieh and Yang, 2009;
Yang and Parwada, 2012; Ahmed, 2016). In the context of our
empirical application, we show that by not accounting for time-
varying parameters, the forecasting ability of discrete-choice mod-
els with conditional heteroscedasticity deteriorates.

Our model entails estimation challenges due to its latent nature,
the presence of stochastic volatilities as well as the presence of the
latent time-varying parameters. Therefore, we resort to Markov
chain Monte Carlo methods and devise an efficient algorithm in
order to estimate all parameters of interest.

In terms of our empirical application, our point of departure is
the famous model of Hamilton and Jorda (2002) who examined
the direction and magnitude of change of the Federal funds rate
target in the context of an ordered probit specification. We built
upon this model to account for time-varying parameters as well as
conditional heteroscedasticity and conduct a forecasting exercise.
Forecast evaluation is conducted, using point and density forecasts.

The resulting empirical model is inspired by the paper of Dueker
(1999) who highlighted the importance of accounting for condi-
tional heteroscedasticity in modeling discrete changes in the bank
prime lending rate and the paper of Huang and Lin (2006) who
examined the same issue, using an ordered probit model with
time-varying parameters.

2. Econometric set up

Consider the following latent time-varying parameter regres-
sion model with stochastic volatility

y;k :x;ﬂ'i‘Z;(![ +£t5 & ™~ N(O’ exp(h[))v t= 15 "‘7T7 (1)
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Eq. (1) contains the constant coefficient vector, 8, of dimension
k x 1 and time-varying coefficients, a;, of dimension p x 1. The
design matrix X, includes an intercept. The parameter-driven dy-
namics follow a random walk process which is given in Eq. (2). This
process is initialized with e¢yp = 0 and uy ~ N(0, X,), where X is
a known initial state error variance.

In expression (3) time-varying volatility is captured by a
stochastic volatility model, where h; is the log-volatility at time t.
The dynamics of h; is governed by a stationary (|¢| < 1) first-order
autoregressive stochastic process with unconditional mean u, and
unconditional variance U,f (1—¢?); the parameter ¢ measures the
persistence in log-volatilities and anz is the variance of shock to the
log-volatility. We also assume that both the error terms &; and 7,
are independent for all t.

The variable yf is latent. Instead, we observe the ordinal re-
sponse variable y;, where each y; takes on any one of the | ordered
values in the range 1, ..., J. The unobserved variable y; and the
observed variable y, are connected by

VZe=j & a<y <g 1<j<]. (4)

To ensure a properly defined cumulative distribution function
for y; we assume ¢ > ¢j_1, Vj, with {; = —oo and ¢; = +o0.

The model, given by the expressions (1)-(4) is the ordinal-
response state space mixed model with stochastic volatility
(OSSMM-SV model).

For identification reasons, some restrictions need to be imposed
on the model. As a location normalization, we set ¢; = 0. As a scale
normalization we fix an additional cutpoint, setting §;_; = 1(Chen
and Dey, 2000)." We also transform the cutpoints as follows
gj*=10g<{f]‘7‘),j=2,...,]—z, (5)

4
with £, 5 = (&5, ..., §",)" This reparameterization, due to
Chen and Dey (2000) allows for an efficient way of simulating the
fj'S.

We assume the following independent priors over the set of
parameters (B, %, &, _,), 0,72, wh, @),

B~ N(ﬁOv B), ¥ ~ IW(s, Ai])v ;Ekz,]_z) ~ N([L{*, 2;*)7
07 ~ TG(va/2, vp/2), n ~ N(iin, 64°), (¢ + 1)/2 ~ Beta(ga, ¢p),

where IW and Zg denote the Inverse-Wishart distribution and the
inverse gamma distribution, respectively. The prior on (¢ + 1)/2
ensures that the prior on ¢ has support on (—1, 1). Furthermore,
the reparametrization in (5) allows us to place unrestricted priors
over &f, ;5. Therefore, for the transformed cutpoints £, ,_,, we
assume a multivariate normal prior.

3. Posterior analysis

3.1. MCMC algorithm

Define
y:(}’1,~-7yT)7 y* :(yTa"~sy;i)5 a:(al7"'7aT)7
h=(h, ... hp).

The likelihood function of the proposed model is given by

L=pWIB, &, &3y, h) = 1_[ P(ye =jIB. o, g1, &, h )"0,

t=1 j=1

where

P(y: = jIB, a¢, &j—1, g, he) = @ <

_ o (4171 - X B — Zi“f)
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with 1(y; = j) being an indicator function that equals one if y; = j
and zero otherwise. @ is the standard Gaussian c.d.fand ¢, ;_,) =
(&2, .. g—2).

The MCMC scheme for the OSSMM-SV model consists of up-
dating the parameters (8, ¥, «, anz, Un, @, 42‘2,172)' y*, h). We
sample the state vector «, using the precision sampler of Chan
and Jeliazkov (2009). To update the volatility vector h we apply
the approach of Chan (2017). We update &, ;_,, and y* in one
block, within an independence Metropolis-Hastings step in order
to improve efficiency.

Details of the MCMC algorithm, along with a simulation study,
are provided in the Online Appendix A.
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1 For various identification schemes of ordinal-response models see Chen and
Khan (2003), Hasegawa (2009) and Miiller and Czado (2009).
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