
Economics Letters 156 (2017) 68–73

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

A Bayesian analysis of binary misclassification
Christopher R. Bollinger a, Martijn van Hasselt b,∗
a Department of Economics, The University of Kentucky, United States
b Department of Economics, The University of North Carolina Greensboro, 516 Stirling Street, Greensboro, NC 27412, United States

h i g h l i g h t s

• The mean of a misclassified binary variable is in general only partially identified.
• The exact Bayesian posterior for the mean is derived for several intuitive priors.
• Posterior calculations are feasible without Markov chain Monte Carlo simulation.
• Parts of the identified set for the mean are a posteriori more likely than others.
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a b s t r a c t

We consider Bayesian inference about the mean of a binary variable that is subject to misclassification
error. If the error probabilities are not known, or cannot be estimated, the parameter is only partially
identified. For several reasonable and intuitive prior distributions of the misclassification probabilities,
we derive new analytical expressions for the posterior distribution. Our results circumvent the need for
Markov chain Monte Carlo simulation. The priors we use lead to regions in the identified set that are a
posteriori more likely than others.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of inference for the population
mean of a binary variable that suffers from measurement error.
That is, there is some nonzero probability that observations are
misclassified. This type ofmodel has a long history in both statistics
and econometrics (e.g. Neyman, 1950; Bross, 1954; Aigner, 1973).
If the misclassification rates are known, the mean is identified and
can be estimatedwithout bias. If the rates are unknown but a set of
correctly classified observations is available (i.e., validation data),
the mean is also identified and estimable (Tenenbein, 1970). In the
absence of validation data, however, it is well known that under
mild conditions the populationmean can be non-trivially bounded.
It is then said to be partially identified and the collection of feasible
parameter values is called the identified set. The bounds of this set
can usually be estimated consistently.
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In the classical approach to inference (e.g. Bollinger, 1996;
Imbens and Manski, 2004; Molinari, 2008), a confidence interval
for the parameter takes the form of the estimated bounds,
plus a multiple of their standard errors. The resulting region in
the parameter space, however, can be quite wide and classical
inference provides no additional information about the location
of the parameter within the bounds. In particular applications, a
researcher’s intuition or knowledge of previous studies may lead
him or her to believe that the true parameter is, for example,
likely to be closer to the estimated upper bound. However, such
prior knowledge cannot be easily exploited or incorporated into a
classical analysis.

In this paper we take a Bayesian approach to inference. Our
analysis relies on key insights of Poirier (1998) and Moon and
Schorfheide (2012). Given that some parameters are not identified,
extra care must be given to the specification of prior distributions,
since even asymptotically these priors will remain an important
component of posterior inference. Some previous Bayesian studies
ofmisclassification achieved identification through the prior (Gaba
and Winkler, 1992; Joseph et al., 1995; Evans et al., 1996;
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Rahme et al., 2000). In contrast, we consider a variety of priors
that explicitly incorporate the parameter bounds inherent in the
model. These priors can be considered intermediate between
weak information leading only to partial identification, and strong
information leading to full identification. A second contribution
is that we derive exact, analytical expressions for the posterior
and therefore do not have to rely on Markov chain Monte Carlo
sampling.

Although sensitivity to the prior distribution is sometimes
seen as a weakness of the Bayesian approach, we believe that it
facilitates a sensitivity analysis with respect to assumptions about
misclassification rates. The analysis examines how additional prior
information about these rates affectswhat the researcher can learn
about the population mean. Of course, the identification problem
is by no means eliminated through the use of a Bayesian prior.
Instead, the prior allows us to easily incorporate varying amounts
of information and examine the effect on posterior inferences. Our
results show that under a number of reasonable prior assumptions,
the posterior is far from uniform and, relative to a classical
analysis, provides additional information about the location of the
population mean within the identified set.

The remainder of this paper is organized as follows: Section 2
discusses misclassification and partial identification, as well as a
number of intuitive prior distributions that range from less to
more informative about the probability of amisclassification error.
The resulting finite-sample posterior distributions are presented
in Section 3. Section 4 provides concluding remarks. Derivations of
some of the results are collected in the Appendix.

2. The model

2.1. Misclassification and parameter bounds

Let Z ∈ {0, 1} be a binary random variable with P(Z = 1) = π .
Instead of observing Z , we observe X ∈ {0, 1}, which may suffer
from misclassification error:

P(X = 1|Z) = p(1 − Z) + (1 − q)Z . (1)

Here, p is the probability of a false positive, whereas q is the
probability of a false negative. We assume, as is typical in the
literature, that p + q < 1. This ensures that the covariance
between Z and X is positive. The mean of X can be written as
µ = π(1 − q) + (1 − π)p, which implies the following bounds
on the misclassification rates:

0 ≤ p ≤ µ, 0 ≤ q ≤ 1 − µ. (2)

The parameter π , however, can take values over the entire unit
interval. For example, if p = µ, then π = 0, regardless of the value
of q. Similarly, if q = 1 − µ, then π = 1. Hence, π is completely
unidentified.

Given a random sample X = (X1, . . . , Xn), let n1 =
n

i=1 Xi
and n0 = n − n1 be the observed number of ones and zeros,
respectively. The likelihood f (X|µ) = µn1(1 − µ)n0 is a function
of µ only, so that

f (π, µ|X) ∝ f (X|µ) · f (µ) · f (π |µ)

∝ f (µ|X) · f (π |µ), (3)

and the posterior is the product of the marginal posterior of the
identified parameter and the conditional prior of the unidentified
parameter (Poirier, 1998; Moon and Schorfheide, 2012). If the
true value of the population mean of X is µ0, then under
standard regularity conditions the posterior distribution of µ will
increasingly concentrate around µ0 as n → ∞ (e.g. Heyde and

Johnstone, 1979; Chen, 1985). This has an important implication
for the posterior of π . Eq. (3) implies that

f (π |X) =


f (π, µ|X)dµ

∝


f (µ|X)f (π |µ)dµ,

so that the posterior of π is a mixture of conditional priors. As the
sample size increases, themixing distribution f (µ|X) – namely the
marginal posterior of µ – becomes asymptotically degenerate at
µ = µ0 and f (π |X) converges to f (π |µ0).1

2.2. Prior distributions

In this section we examine a number of prior distributions
that are increasingly informative about the misclassification rates.
The first prior is a uniform distribution for µ, combined with
conditional priors p|µ ∼ U(0, µ) and q|µ ∼ U(0, 1 − µ) that
are uniform on the identified set:

f1(µ, p, q) =
1

µ(1 − µ)
1{0 ≤ p ≤ µ, 0 ≤ q ≤ 1 − µ}. (4)

It follows that f1(µ, p, π) =
µ−p

µ(1−µ)π2 . Using the relation between
µ, p and q, and letting q range from 0 to 1 − µ, it follows that
max {0, (µ − π)/(1 − π)} ≤ p ≤ µ. Since f1(π |µ) = f1(π, µ)
(because µ has a uniform prior), we find

f1(π |µ) = 1{π > µ}

 µ

0

(µ − p)
µ(1 − µ)π2

dp

+ 1{π ≤ µ}

 µ

µ−π

1−π

(µ − p)
µ(1 − µ)π2

dp

= 1{π > µ}
µ

2(1 − µ)π2
+ 1{π ≤ µ}

(1 − µ)

2µ(1 − π)2
. (5)

The second prior expresses the belief that, conditional on µ,
lower misclassification rates are more likely than higher ones. We
combine a uniformprior forµwith ‘power-type’ conditional priors
for p and q (proportional to p−1/2 and q−1/2 on the identified set).
This yields the prior

f2(µ, p, q) =
1

4
√

µ(1 − µ)pq
1{0 ≤ p ≤ µ, 0 ≤ q ≤ 1 − µ}. (6)

This implies the following joint prior distribution for (µ, p, π):

f2(µ, p, π) =
1

4π
√

πµ(1 − µ)
·

µ − p
p2(1 − π) + p(π − µ)

,

where max{0, (µ − π)/(1 − π)} ≤ p ≤ µ. It is shown in the
Appendix that

f2(π |µ) =
µ(1 − π) +

1
2 (π − µ)

4π(1 − π)
√

π(1 − π)µ(1 − µ)

× log


π−µ+2(1−π)µ+2
√

π(1−π)µ(1−µ)

|π−µ|


−

1
4π(1 − π)

. (7)

The third prior expresses the belief that, with probability λ, the
misclassification error is symmetric. In that case, p = q and false
positive and false negatives are equally likely. We maintain the

1 The argument given here also applies to the unidentified parameter p and q. In
large samples f (p|X) and f (q|X) will converge to f (p|µ0) and f (q|µ0), respectively.
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