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a b s t r a c t

We use a particular quasi-generalized least squares (QGLS) approach to study a linear regression model
with spatially correlated error terms. The QGLS estimator is consistent, asymptotically normal, computa-
tionally easier than GLS, and it appears to not lose much efficiency. A variance–covariance estimator for
QGLS, which is robust to heteroskedasticity, spatial correlation and general variance–covariancemisspec-
ification is provided.

© 2017 Published by Elsevier B.V.

1. Introduction

Economists often use proximity tomeasure interactions among
agents. Even if one is not interested in interactions, one often needs
to account for spatial dependence in cross-sectional data when
conducting inference.

There are two popular approaches to accounting for spatial
correlation among the errors in linear models. First, one can
apply ordinary least squares (OLS) for estimation and then obtain
standard errors and test statistics that are robust to fairly general
forms of spatial correlation. Though computationally simple,
OLS may be quite inefficient. The second approach is to apply
feasible generalized least squares (FGLS) in an attempt to improve
efficiency over OLS.

There are some potential drawbacks with FGLS. First, with a
sample of sizeN , we cannot estimate anN×N variance–covariance
matrix without imposing restrictions. Second, the calculation
of the inverse of a huge variance–covariance matrix generally
needs substantial computer memory and can run slowly. Third,
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most FGLS approaches conduct inference as if the fully vari-
ance–covariance matrix is correctly specified, which can be very
misleading in practice.

In this paper we propose a middle ground between OLS and
a fully specified FGLS analysis. Our approach gains back much of
the efficiency lost by using OLS while being computationally fairly
simple. The method we propose, quasi-generalized least squares
(quasi-GLS or QGLS), uses observations of nearest neighbors in
a GLS-type analysis. We use the modifier ‘‘quasi’’ because we
understand that, by ignoring units that are not in the groups that
we form, we are unlikely conducting full GLS. Our QGLS estimator
intentionally sets the vast majority of covariances to zero. Since
the correlations within nearby units accounts for most of the
dependence in the data, it is possible to get an estimator that is
close to the full FGLS estimator in terms of asymptotic efficiency. In
addition, it is straightforward to obtain inference robust to general
spatial correlation patterns.

2. A linear model

Spatial data can be analyzed using cross section or panel data.
For example, Baltagi and Pirotte (2011) study estimation in the
context of unobserved effects panel data models with spatial
correlation, where they assume, like other authors, a correctly
specified variance–covariance matrix. Because we are proposing a
new approach that does not even assume correct specification of
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the spatial variances and covariances, we restrict attention to the
cross section case.

Our notation is adopted from Jenish and Prucha (2009). S is the
space the population resides. Let {(xi, yi) , i = 1, 2, . . . ,N} denote
the data sampled at location si ∈ S. Let {ui, i = 1, 2, . . . ,N} denote
the underlying error process. Let dij be the distance between
location si and sj and denote the collection of distances by D ≡
dij, i, j = 1, 2, . . . ,N


. The model is

yi = xiβ + ui, i = 1, 2, . . . ,N, (1)

where xi is a 1 × K vector of regressors with xi1 = 1 and β ≡

(β1, β2, . . . , βK )′ is a K × 1 unknown vector of parameters. In
matrix form,

y = Xβ + u, (2)

where y = (y1, y2, . . . , yN)′, X is an N ×K matrix, with the ith row
equal to xi, and u = (u1, u2, . . . , uN)′. We allow u to exhibit spatial
correlation:

Var (u|X,D) = � (D, λ) , (3)

where λ is a vector of variance–covariance parameters. For
example, we might propose

�ii = σ 2, (4)

and

�ij = σ 2c

dij, ρ


, i ≠ j, (5)

where ρ is a spatial correlation parameter and c (·) is a correlation
function that decreases in dij.

3. Estimation

We want to show proof of concept as opposed to deriving new
asymptotic theory. The asymptotic results in Jenish and Prucha
(2009) can be applied immediately to the OLS estimator, and they
are easily modified for the quasi-FGLS estimator. As in Jenish and
Prucha (2009), we are thinking of increasing domain asymptotics.

3.1. OLS estimator

In addition to being of interest in its own right, OLS provides a
first-stage estimation for QGLS. Given the data vector y and data
matrix X, the OLS estimator is

β̂OLS = (X′X)−1X′y. (6)

Under the assumptions of Theorem 1 in Jenish and Prucha
(2009), β̂OLS is consistent and asymptotically normal:

√
N

β̂OLS − β


d

→N

0,A−1BA−1 , (7)

where the limits

A = lim
N→∞

1
N

N
i=1

E

x′

ixi


(8)

B = Var


1

√
N

N
i=1

x′

iui


(9)

are assumed to exist, with A being nonsingular. Estimation of A is
straightforward using the sample average, and estimation of B can
be done as in Conley (1999) or Kelejian and Prucha (2007).

3.2. Quasi-GLS estimator

Our quasi-GLS approach starts by dividing the spatial data
into groups based on ‘‘closeness,’’ so that correlation within
groups is relatively large. Admittedly, the group choices are
somewhat arbitrary, but that choice does not affect consistency
or asymptotically normality under standard assumptions. If we
assume a correct structure for the variance–covariance matrix, the
most efficient estimator is full FGLS. However, such an estimator is
computationally intensive, and it need not be efficient if we allow
a misspecified variance–covariance structure.

For our approach, we have in mind relatively few units per
group: at least two and perhaps up to a handful. The exact choice of
groups is left to future research. Once we have chosen the groups,
we can think of a system of equations
yg = Xgβ + ug , g = 1, 2, . . . ,G, (10)
where each group has the same size L (although this is not
required). Therefore, yg and ug are L × 1 and Xg is L × K . Let
3g ≡ Var


ug |Xg ,Dg


be the variance–covariancematrix for group

g , where Dg is the lattice where the observations in group g reside.
Because we are treating the distances as nonrandom, we are free
to group observations by distance without causing inconsistency.
Let �N be the true N × N variance–covariance matrix and 3N be
the block-diagonalmatrix that only containwithin group variances
and covariances.

Suppose 3g is dependent on the parameter vector λ and λ̂ is
an estimator for λ and 3̂g the corresponding estimator of 3g . The
feasible QGLS (FQGLS) estimator can be written as

β̂FQGLS =


G

g=1

X′

g3̂
−1
g Xg

−1  G
g=1

X′

g3̂
−1
g yg


. (11)

As with the OLS estimator, we do not provide careful regularity
conditions, as they are standard in the spatial econometrics
literature. One of the differences with pooled OLS is that we must
assume the explanatory variables are strictly exogenous in the
sense that
E (ui|x1, x2, . . .) = 0, i = 1, 2, . . . , (12)
which implies E


X′

g3
−1
g ug


= 0 for all g . In addition to spatial

mixing conditions we assume that

Q = lim
G→∞

1
G

G
g=1

E

X′

g3
−1
g Xg


(13)

and

S = lim
G→∞

E


1
G

G
g=1

G
h=1

X′

g3
−1
g ugu′

h3
−1
h Xh


(14)

exist and Q has rank K . We can apply the results in Jenish and
Prucha (2009) becausewe are grouping ‘‘nearby’’ observations, and
so the groups will form a spatially mixing sequence and generally
satisfy Theorems 1 and 3 in Jenish and Prucha (2009). Therefore, it
is generally true that
√
G

β̂FQGLS − β


→

d N

0,Q−1SQ−1 . (15)

The result in (15) allows nonnormal errors and also three
kinds of misspecification in the variance–covariance matrix. One
intentional misspecification is that we ignore correlations among
observations not in the same group. Second, we allow for
misspecification of the structure of Λg , which holds if we do
not have the original structure of ΩN correctly specified. Third,
even if we correctly specify Λg we allow the estimator of λ
to be inconsistent. The work here differs from Andrews and
Guggenberger (2012) in that we allowmisspecification in both the
heteroskedasticity and spatial correlation structures.
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