
Economics Letters 156 (2017) 162–167

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

A martingale-difference-divergence-based test for specification✩

Liangjun Su ∗, Xin Zheng
School of Economics, Singapore Management University, Singapore

h i g h l i g h t s

• We propose a novel martingale-difference-divergence-based test for specification.
• The test does not require any nonparametric estimation.
• The test is applicable even if we have many covariates in the regression model.
• The test has superb finite sample performance and dominates its competitors.
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a b s t r a c t

In this paper we propose a novel consistent model specification test based on the martingale difference
divergence (MDD) of the error term given the covariates. The MDD equals zero if and only if error term
is conditionally mean independent of the covariates. Our MDD test does not require any nonparametric
estimation under the alternative and it is applicable even if we have many covariates in the regression
model. We establish the asymptotic distributions of our test statistic under the null and a sequence of
Pitman local alternatives converging to the null at the usual parametric rate. Simulations suggest that
our MDD test has superb performance in terms of both size and power and it generally dominates several
competitors. In particular, it is the only test that haswell controlled size in the presence ofmany covariates
and reasonable power against high frequency alternatives as well.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we propose a new test for the correct specifica-
tion of a parametric conditional mean model based on a variant
of the martingale difference divergence (MDD hereafter) measure
of conditional mean dependence between two random variables.
In a sequence of papers, Székely et al. (2007), Székely and Rizzo
(2009) and Székely and Rizzo (2014) propose to use distance co-
variance and distance correlation to measure the dependence be-
tween two random vectors which exhibit various nice properties.
Such measures have been explored for feature screening in high
dimensional regressions; see, e.g., Li et al. (2012). When one of the
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two random variables is a scalar, Shao and Zhang (2014, SZ here-
after) propose to use MDD to measure the conditional mean de-
pendence of the scalar random variable given a random vector (see
the definition of MDD in (2.4) in the next section). Like the rela-
tionship between covariance and correlation, the MDD can also be
rescaled to ensure that it lies between 0 and 1, yielding themartin-
gale difference correlation (MDC) measure of a scalar variable given
a random vector. MDD measures the departure of the conditional
mean independence between a scalar response variable and a vec-
tor of covariates, which is a natural extension of the distance cor-
relation measure proposed by Székely et al. (2007). MDD andMDC
havemany nice properties. First, both of them are nonnegative and
equal zero if and only if the scalar response variable is condition-
ally mean independent of the covariates. This suggests that we can
propose a test for the conditional mean independence hypothe-
sis which is widely used in econometrics and statistics. Second,
both measures have a closed-form formula that is only involved
with certain expectation and norm calculations so that they can be
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easily estimated from the data based on the sample analogue prin-
ciple. Third, the measures are dimension-free in the sense that the
dimension of the conditioning variable is allowed to be large but fi-
nite. Indeed, SZ useMDC as amethod to conduct high-dimensional
variable selection to screen out variables that do not contribute to
the conditional mean of the response variable given the covariates.

One drawback of SZ’s original MDD and MDC measure is that
when they are used for variable screening, both the response
variable and covariates need to be observed. Therefore, we propose
a variant of MDD that is used to measure the conditional mean
independence of a scalar random error term given the covariates.
With this variant, we propose a new consistent test for the null
hypothesis that a parametric conditional mean model is correctly
specified. Under the null hypothesis, the error term from the
correctly specifiedmodel is conditionallymean independent of the
regressors in the model and has mean zero. Since the error term
is not observed, we propose to estimate it from the null model
and construct a test statistic based on the sample analogue of this
new MDD measure. We study the asymptotic distributions of the
test statistic under the null and under a sequence of Pitman local
alternatives. Our test shares many nice properties that a typical
nonsmoothing testmight have. First, its limiting distribution under
the null is a mixture of central chi-square distributions that is not
asymptotically pivotal. So we propose a wild bootstrap method to
obtain the bootstrap p-value or critical value. Second, our test has
nontrivial asymptotic power against local alternatives converging
to the null at the usual parametric rate. More importantly,
our test is free of the choice of any smoothing parameter
(e.g., the bandwidth in kernel-based tests or the number of sieve
approximating terms in sieve-based tests) and it does not suffer
from the curse of dimensionality associated with kernel- or sieve-
based tests. In principle, our test works for any finite dimensional
regressionproblemwhere the number of covariates, q, can be large.
But for the derivation of our asymptotic distribution theory, we
still need restrict q to be fixed. We conduct some Monte Carlo
simulations and compare our test with some popular tests in the
literature. Our simulation results indicate that ourMDD-based test
generally outperforms its competitors, especially for the case of
high frequency alternatives and for the case of many covariates
(e.g., q = 10, 20). To the best of our knowledge, this paper is the
first to consider consistentmodel specification test in the presence
of many covariates where existing tests tend to fail due to the
notorious curse of dimensionality.

The rest of the paper is organized as follows. We introduce
the hypotheses and the test statistic in Section 2. We study
the asymptotic distributions of the test statistic under the null
hypothesis and under a sequence of Pitman local alternatives in
Section 3. We compare the MDD test with several popular tests
throughMonte Carlo simulations in Section 4. Section 5 concludes.
The proofs of all results are relegated to the online supplementary
Appendix.

Notation. For any matrix or vector A, ∥A∥ denotes its Euclidean
norm. The operators

p
→ and

d
→ denote convergence in probability

and distribution, respectively.

2. The hypotheses and statistic

In this section we state the hypotheses and introduce the test
statistic.

2.1. The hypotheses

We consider the following parametric regression model

Yi = g(Xi; β) + εi, i = 1, . . . , n, (2.1)

where Yi is a scalar dependent variable, Xi is a q × 1 vector of
covariates, β is a d × 1 vector of unknown parameters, and εi is
the unobserved error term. We assume that the functional form of
g(·; ·) is known up to the finite dimensional parameter β . We are
interested in testing the correct specification of g(·; ·). That is, we
test the null hypothesis

H0 : P {E(Yi|Xi) = g(Xi; β0)} = 1 for some β0 ∈ B (2.2)

versus the alternative hypothesis

H1 : P {E(Yi|Xi) = g(Xi; β)} < 1 for all β ∈ B, (2.3)

where B is the parameter space.

2.2. Test statistic

To motivate our test statistic, we follow SZ and consider the
MDD of ε given X whose square is defined by

MDD (ε|X)2 =


Rq

E 
ε exp(is′X)


− E (ε) E


exp(is′X)

2
×W (s)ds, (2.4)

where i =
√

−1, W (s) =
1

cq∥s∥(1+q) , cq =
π (1+q)/2

Γ ((1+q)/2) , and Γ (·) is

the complete gamma function: Γ (z) =


∞

0 tz−1 exp (−t) dt . Let
εĎ, XĎ


be an independent copy of (ε, X). By Theorem 1 in SZ, we

have

MDD (ε|X)2 = −E

[ε − E (ε)]


εĎ − E


εĎ

 X − XĎ


, (2.5)

and MDD (ε|X)2 = 0 if and only if E (ε|X) = E (ε).
In our setup, ε denotes the error term in a regression such that

E (ε) = 0 is always maintained. This motivates us to consider the
following variant of MDD (ε|X)2

MDD∗ (ε|X)2 = −E

εεĎ

X − XĎ


+ 2E

ε
X − XĎ


E


εĎ


. (2.6)

The followingproposition establishes theproperties ofMDD∗ (ε|X)2

that serve as the basis of our test statistic.

Proposition 2.1. Let

εĎ, XĎ


be an independent copy of (ε, X),

where ε is a scalar random variable and X is a q × 1 random vector.
Suppose that 0 < E


ε2


< ∞ and 0 < E[∥X∥

2
] < ∞. Then

(i) MDD∗ (ε|X)2 ≥ 0;
(ii) MDD∗ (ε|X)2 = 0 if and only if E(ε|X) = 0 almost surely (a.s.).

An important implication of Proposition 2.1 is that we can test
(2.2) by testing whether MDD∗ (εi|Xi)

2
= 0, where εi = Yi −

g(Xi; β0). In practice, εi is not observed. We propose to estimate
the model (2.1) by the nonlinear least squares (NLS) to obtain the
NLS estimator β̂ ofβ . Let ε̂i = Yi−g(Xi; β̂).We propose to estimate
nMDD∗ (ε|X)2 by the following object

Tn = −
1
n

 
1≤i≠j≤n

ε̂iε̂jκi,j +
2
n

 
1≤i≠j≤n

ε̂iκi,j
1
n

n
k=1

ε̂k, (2.7)

where κi,j ≡ ∥Xi − Xj∥. In the special case where g(Xi; β) is linear
in Xi and β , i.e., g(Xi; β) =


1, X ′

i


β , we have

n
i=1 ε̂i = 0 and

Tn = −
1
n

 
1≤i≠j≤n

ε̂iε̂jκi,j ≡ T ℓ
n . (2.8)

Other than this case,
n

i=1 ε̂i is generally nonzero and second term
in (2.7) is necessary.
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