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h i g h l i g h t s

• A root estimator is proposed to identify peer effects in a linear-in-means model.
• The identification does not rely on variation of group sizes or intransitivity.
• The root estimator is consistent and asymptotic normal under heteroskedasticity.
• The root estimator performs well in finite samples.
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a b s t r a c t

By exploiting the correlation structure of individual outcomes in a network, we show that a carefully
constructed root estimator can identify peer effects in linear social interactionmodels,when identification
cannot be achieved via variation of group sizes or intransitivity of network connections. We establish the
consistency and asymptotic normality of the root estimator under heteroskedasticity, and conductMonte
Carlo experiments to investigate its finite sample performance.
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1. Introduction

Tremendous progress has been made in understanding identi-
fication of peer effects since the seminal work by Manski (1993)
(see Blume et al., 2011, for a review). When individuals are ran-
domly assigned into groups and social networks are formedwithin
each group, identification of peer effects can be achieved via either
variation of group sizes (see, e.g., Lee, 2007; Graham, 2008) or ex-
clusion restrictions based on network topology (Bramoullé et al.,
2009). However, if all groups are of the same size and every indi-
vidual is equally influenced by all the other group members, then
peer effects cannot be identified by the above methods. In this pa-
per, we propose a root estimator that can be used to identify peer
effects in such situations.

The idea of the root estimator traces back toOrd (1975),where it
is used to estimate models of spatial interaction. In a recent paper,
Jin and Lee (2012) generalize the original root estimator in Ord
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(1975) to estimate a more general class of spatial models. In this
paper, we show that a carefully constructed root estimator, based
on both linear and quadratic moment conditions of the error term,
can identify peer effects in a linear-in-means model with equal-
sized groups. We establish the root-n consistency and asymptotic
normality of the root estimator under heteroskedasticity, and
conduct Monte Carlo experiments to investigate its finite sample
performance.

Of course, the usefulness of the root estimator is not limited
to the specific network structure considered in this paper. Here,
we focus on the linear-in-means model with equal-sized groups
for two reasons. First, identification of peer effects in this situation
cannot be achieved by existing methods. Second, data with equal-
sized groups are not uncommon in the real world. For example,
the capacity of college classes are often fixed over time. For a
popular class with full enrollment every semester, its students in
each semester form equal-sized groups.

The rest of the paper is organized as follows. Section 2
presents the linear-in-meansmodel and discusses its identification
issues. Section 3 introduces the root estimator and studies its
asymptotic properties. Section 4 provides simulation results on the
finite sample performance of the proposed estimator. Section 5
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concludes. The proofs are collected in the online appendix.
Throughout the paper, let In denote an n × n identity matrix, ιn
denote an n × 1 vector of ones, and diagni=1{di} denote an n × n
diagonal matrix with the ith diagonal element being di.

2. Linear-in-means social interaction model

Consider a sample of n equal-sized groups with m (m ≥

2) individuals in each group. Then, in a linear-in-means social
interactionmodel, the outcome, yi,g , of individual i in the gth group
is given by

yi,g = λ0yi,g + xi,gβ0 + xi,gγ0 + ui,g , (2.1)

where xi,g is a p-dimensional row vector of exogenous individual
characteristics, and ui,g is a possibly heteroskedastic error term. In
this model, yi,g =

1
m−1

m
j=1,j≠i yj,g is the average outcome of the

individuals (other than i) in the gth group, with its coefficient λ0
representing the endogenous effect; xi,g =

1
m−1

m
j=1,j≠i xj,g is the

vector of average characteristics of the individuals (other than i) in
the gth group,with its coefficient vector γ0 representing exogenous
(contextual) effects. It has been one of the main interests in the
social interaction literature to separately identified endogenous
and exogenous peer effects.

In matrix form, model (2.1) can be written as

yg = λ0Amyg + Xgβ0 + AmXgγ0 + ug , (2.2)

where yg = (y1,g , . . . , ym,g)
′, Xg = (x′

1,g , . . . , x
′
m,g)

′, ug =

(u1,g , . . . , um,g)
′, and Am is an adjacency matrix given by Am =

1
m−1 (ιmι′m − Im). We allow for heteroskedasticity of unknown
form and assume ug are independently distribution across g with
E(ug |Xg) = 0 and E(ugu′

g |Xg) = 6g ≡ diagmi=1{σ
2
i,g}. We assume

|λ0| < 1. Then, the reduced form of (2.2) is

yg = (Im − λ0Am)−1(Xgβ0 + AmXgγ0 + ug)

=

∞
k=1

λk−1
0 Ak−1

m (Xgβ0 + AmXgγ0 + ug). (2.3)

In the current literature, identification of peer effects is usually
achieved through either variation of group sizes (see, e.g., Lee,
2007; Graham, 2008) or exclusion restrictions based on network
topology (Bramoullé et al., 2009).

Lee (2007) show that, for linear-in-means models, endogenous
and exogenous effects can be identified if group sizes have
sufficient variation. However, this identification strategy does not
work in our case as all groups in the sample have the same size.

Bramoullé et al. (2009) show that if the matrices Im,Am,A2
m

are linearly independent, then the exogenous characteristics of
indirect connections given by A2

mXg can be used as instrumental
variables for the outcomes of direct connections Amyg to identify
the endogenous effect from the exogenous effect. The linear
independence of Im,Am,A2

m is satisfied, if intransitivity exists
in a network such that two individuals, who share a common
connection/friend, are not directly connected. In our case, the
adjacencymatrix Am =

1
m−1 (ιmι′m − Im) corresponds to a complete

network where all individuals are directly connected. It is easy to
see A2

m =
1

m−1 Im +
m−2
m−1Am is linearly dependent on Im and Am.

As the linear-in-means model (2.1) with equal-sized groups
cannot be identified by the above methods, it is sometimes given
as an example of the reflection problem (Manski, 1993), referring
to the failure to separately identify endogenous and exogenous
effects. In the following, we show that this model actually can be
identified via a root estimator.

3. Root estimator

3.1. Asymptotic identification

We assume that we observe an independently distributed
sample of (yg ,Xg) of size n from a population of equal-sized
groups. Therefore, in the asymptotic analysis, we keep the group
size m fixed and let the number of groups n go to infinity. Let
ug(θ) = yg − λAmyg − Xgβ − AmXgγ , where θ = (λ, β′, γ ′)′.
The root estimator of θ is based on the linear moment functions
f1,g(θ) = [Xg ,AmXg ]

′ug(θ), and the quadratic moment function
f2,g(θ) = ug(θ)

′Amug(θ). The quadratic moment function exploits
the correlation structure of individual outcomes in a network.
Let f1,∞(θ) = limn→∞ n−1n

g=1 E[f1,g(θ)] and f2,∞(θ) =

limn→∞ n−1n
g=1 E[f2,g(θ)]. For θ to be asymptotically identified,

the moment equations f∞(θ) ≡ [f1,∞(θ)′, f2,∞(θ)]′ = 0 need
to have a unique solution at the true parameter vector θ0 =

(λ0, β
′

0, γ
′

0)
′ (Definition 5.2 in Davidson andMacKinnon, 1993). As

we assume E(ug |Xg) = 0 and E(ugu′
g |Xg) = 6g ≡ diagmi=1{σ

2
i,g},

it follows that E[f1,g(θ0)] = 0 and E[f2,g(θ0)] = tr(Am6g) = 0.
Hence, θ0 is a solution of f∞(θ) = 0. What is left to show is that θ0
is the only solution.

AsA2
m =

1
m−1 Im+

m−2
m−1Am, it follows from the reduced form (2.3)

that E(Amyg |Xg) is linearly dependent on Xg and AmXg , such that
E(Amyg |Xg) = Xgc1 + AmXgc2, where c1, c2 are p × 1 vectors of
constants. Then, f1,∞(θ) = 0 implies

lim
n→∞

n−1
n

g=1

E([Xg ,AmXg ]
′
[Xg ,AmXg ])

×


(λ0 − λ)c1 + β0 − β
(λ0 − λ)c2 + γ0 − γ


= 0.

If limn→∞ n−1n
g=1 E([Xg ,AmXg ]

′
[Xg ,AmXg ]) has full column

rank, then the solution of f1,∞(θ) = 0 is given by

β = β0 + (λ0 − λ)c1 and γ = γ0 + (λ0 − λ)c2. (3.1)

Substitution of (3.1) into f2,∞(θ) = 0 gives

(λ0 − λ) lim
n→∞

n−1
n

g=1

2tr(AmGm6g)

+ (λ0 − λ)2 lim
n→∞

n−1
n

g=1

tr(GmAmGm6g) = 0, (3.2)

where Gm = Am(Im − λ0Am)−1. Eq. (3.2) is quadratic in λ, and has
two roots given by

λ = λ0 +

lim
n→∞

n−1
n

g=1
tr(AmGm6g)

lim
n→∞

n−1
n

g=1
tr(GmAmGm6g)

±

 limn→∞
n−1

n
g=1

tr(AmGm6g)


lim
n→∞

n−1
n

g=1
tr(GmAmGm6g)

.

To know which root is consistent, i.e., λ = λ0, we need to
know the sign of limn→∞ n−1n

g=1 tr(AmGm6g). As |λ0| < 1
and m ≥ 2, it follows that limn→∞ n−1n

g=1 tr(AmGm6g) =

limn→∞ n−1n
g=1(1−λ0)

−1(m+λ0 −1)−1m
i=1 σ 2

i,g > 0. Hence,
the consistent root is given by

λ = λ0 +

lim
n→∞

n−1
n

g=1
tr(AmGm6g )

lim
n→∞

n−1
n

g=1
tr(GmAmGm6g )

−

 limn→∞
n−1

n
g=1

tr(AmGm6g )


lim
n→∞

n−1
n

g=1
tr(GmAmGm6g )

= λ0.

(3.3)
With λ uniquely determined by (3.3), β and γ can be identified by
(3.1).
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