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h i g h l i g h t s

• A semiparametric stochastic volatility model with time-varying parameters is considered.
• An efficient Markov Chain Monte Carlo estimation algorithm is proposed.
• The proposed model is applied to inflation modelling.
• The proposed model performs better than alternative specifications.
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a b s t r a c t

We develop a Bayesian semiparametric method to estimate a time-varying parameter regression model
with stochastic volatility, where both the error distributions of the observations and parameter-driven
dynamics are unspecified. We illustrate our methodology with an application to inflation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A vast literature has demonstrated the gains from allowing for
time-varying parameters in stochastic volatility models (TVP-SV
models), when analysing (macro) financial data (Primiceri, 2005;
Cogley and Sargent, 2005; Stock and Watson, 2007; D’Agostino
et al., 2013; Clark and Ravazzolo, 2015). Due to the presence of
the stochastic volatility component the likelihood function for
this class of models is intractable. As a result, researchers have
developed Markov chain Monte Carlo (MCMC) algorithms for
estimating the model parameters (see, for example, Nakajima,
2011).

In this paper, we consider two semiparametric extensions of
the TVP-SVmodel, utilizing a popular Bayesian prior for modelling
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unknown distributions, the Dirichlet process (DP) prior (Ferguson,
1973). We first use this prior to model in a flexible way the
distribution of the dependent variable’s innovation and second,
to consider wider class of the distribution of the time-varying
parameter’s innovation. The resulting semiparametric TVP-SV
model is referred to as the S-TVP-SV model. To estimate the
model parameters and the unknown distributions, we propose an
efficient MCMC algorithm.

The first semiparametric extension has already been applied
in the context of standard stochastic volatility models (Jensen
and Maheu, 2010; Delatola and Griffin, 2011). The second
semiparametric extension is novel and constitutes our main
contribution to the Bayesian semiparametric literature on TVP-SV
models.

Themotivation behind the S-TVP-SVmodel stems from the em-
pirical literature on inflation modelling. Recently, evidence has

http://dx.doi.org/10.1016/j.econlet.2016.10.035
0165-1765/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.econlet.2016.10.035
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2016.10.035&domain=pdf
mailto:s.dimitrakopoulos@warwick.ac.uk
http://dx.doi.org/10.1016/j.econlet.2016.10.035


S. Dimitrakopoulos / Economics Letters 150 (2017) 10–14 11

been found of non-normality in modelling inflation persistence,
leading to increased interest in non-Gaussian (fat-tailed) distri-
butions for modelling inflation dynamics (Lanne and Saikkonen,
2011; Lanne et al., 2012; Chiu et al., 2014; Lanne, 2015). Our
point of departure is an autoregressive version of the unobserved
components with stochastic volatility (UC-SV) model, proposed by
Stock and Watson (2007). Stock and Watson (2007) considered a
UC-SV model that decomposed inflation into a trend and a transi-
tory component and assumed fat-tailed error distributions for the
observation and state equations to control for outliers.

In this paper, we generalize the approach of Stock and Wat-
son (2007) to account for shocks that may not be symmetrically
distributed, as economic systems may react differently in reces-
sions and expansionary periods. Furthermore, if there are different
regimes operating within the sample period, a fat-tailed distribu-
tion may be inadequate to capture this data characteristic. In our
proposed model, each of the unconditional error distributions for
the observations and the parameter-driven dynamics is allowed to
follow an infinite mixture of normals.

2. Econometric set up

2.1. The TVP-SV model

Consider the following TVP-SV model

yt = x′

tβ + z′

tαt + εt , εt ∼ N(µ, exp(ht)), t = 1, . . . , T , (1)

αt+1 = αt + ut , ut ∼ N(0, 6), t = 0, 1, . . . , T − 1, (2)

ht+1 = µh + φht + ηt , |φ| < 1, ηt ∼ N(0, σ 2
η ). (3)

Eq. (1) contains two types of coefficients: the constant coeffi-
cient vector, β, of dimension k × 1 and time-varying coefficients,
αt , of dimension p × 1. xt and zt are the design matrices which do
not include an intercept and ht is the log-volatility at time t .

Eq. (2) is a randomwalk processwhich is initializedwithα0 = 0
and u0 ∼ N(0, 60), where N(·, ·) denotes the normal distribution
with the initial state error variance 60 being known.

The error terms εt and ηt are assumed to be independent1 for
all t . The error term εt follows a normal distribution with mean µ
and time-varying variance σ 2

t = exp(ht). The dynamics of the log-
volatilityht = log(σ 2

t ) are describedby Eq. (3)which is a stationary
(|φ| < 1) first-order autoregressive process. This process is initial-
izedwith h1 ∼ N(µh/(1−φ), σ 2

η /(1−φ2)). The parameterφ is the
persistence volatility that measures the degree of autocorrelation
in ht , and ση is the standard deviation of the shock to log-volatility.

We assume the following priors over the set of parameters
(β, σ 2

η , 6, µh, µ),

β ∼ N(β0, B), σ 2
η ∼ IG(va/2, vβ/2), 6 ∼ IW (δ, ∆−1),

µh ∼ N(µ̄h, σ̄h
2), µ ∼ N(µ̄, σ̄ 2),

where IW and IG denote the Inverse-Wishart distribution and the
inverse gamma distribution, respectively. To guarantee that the
persistence parameter φ satisfies the stationarity restriction, we
assume (φ + 1)/2 ∼ Beta(φa, φβ).

2.2. Two semiparametric extensions

The advantage of Dirichlet process modelling results from its
theoretical properties, one of which is the clustering property. A

1 In the context of stochastic volatilitymodels, Jensen andMaheu (2014) assumed
that the errors εt and ηt are correlated andmodelled themnonparametrically, using
DP priors.

detailed exposition of the statistical properties of the DP prior is
given, among others, by Ghosal (2010).

The error term εt , is assumed to have an unspecified functional
form based on the following Dirichlet process mixture (DPM)
model

εt |ϑt , ht ∼ N(µt , λ
2
t exp(ht)), ϑt = (µt , λ

2
t ), t = 1 . . . , T ,

ϑt
i.i.d.
∼ G,

G|a,G0 ∼ DP(a,G0),

G0 = N(µt; µ0, τ0λ
2
t )IG


λ2
t ;

e0
2

,
f0
2


,

a ∼ G(c, d),

(4)

where µh in the stochastic volatility equation is set to zero for
identification reasons. The unspecified functional form of the
distribution of εt , given in (4), was first proposed by Jensen and
Maheu (2010).

According to specification (4), the conditional distribution of εt
given ht and ϑt is Gaussian with mean µt and variance λ2

t exp(ht).
The ϑt = (µt , λ

2
t ) is generated from an unknown distribution

G. For the prior base distribution G0 we assume a conjugate
normal-inverse gamma, N(µt; µ0, τ0λ

2
t )IG(λ2

t ;
e0
2 ,

f0
2 ). A gamma

prior distribution G(c, d) is placed upon a, which is the precision
parameter (positive scalar). As a tends to infinity G converges
pointwise to G0.

One can show that the unconditional distribution of εt follows
an infinite mixture model with time-varying means and variances.
So our DPM model is able to capture asymmetries and multiple
modes that may characterize the data.

Furthermore, to capture the uncertainty about the distribution
of ut , we impose on it the following novel flexible structure,

ut |ωt , 6 ∼ N(0, ω−1
t 6), t = 1, . . . , T − 1,

ωt
i.i.d.
∼ Gω,

Gω|aω,G0ω ∼ DP

aω,G0ω = G

 eω

2
,
eω

2


,

aω ∼ G(cω, dω).

(5)

The positive scale parameter ωt in (5) comes from an unknown
discrete distributionGω . TheDirichlet process prior in (5) is defined
by the parameter aω and the base gamma distribution G0ω . As the
precision parameter aω tends to infinity, Gω converges pointwise
to G0ω . In this case, the unconditional distribution of ut is a
multivariate Student-t distribution with eω degrees of freedom
and as eω increases the error distribution mimics the Normal
distribution. For small values of aω the unconditional distribution
of ut is a finite mixture of multivariate normals, each of which has
the same mean. Therefore, our semiparametric approach for the
distribution ofut can capture the potential clustering in themixing
scalar parameter of the innovation’s covariance matrix.

The TVP-SV model combined with the DPM models of (4) and
(5) produces the semiparametric TVP-SVmodel (S-TVP-SVmodel).

3. Posterior analysis

3.1. The MCMC algorithm for the S-TVP-SV model

Define

y = (y1, . . . , yT ), α = (α1, . . . ,αT ), h = (h1, . . . , hT ),

θ = (ϑ1, . . . , ϑT ), ϑt = (µt , λ
2
t ), ω = (ω1, . . . , ωT−1).

Our MCMC scheme for the semiparametric model consists of
two parts. In part I, we update the parameters (β,6, σ 2

η ,α,h,φ) and
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