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a b s t r a c t

We study the voluntary provision of a public goodwith private information when inputs are not perfectly
substitutable. Modeling the production function as a mixture of order statistics of individual efforts, we
bridge the extreme best-shot and weakest-link technologies, passing through summation, in a tractable
framework. In contrast with existing predictions, increasing complementarity results in increased public
good provision, if the marginal cost of effort rises sufficiently fast.
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1. Introduction

We study the interplay of private information and input
complementarity for the voluntary provision of public goods.
Input complementarity is known to be relevant to public goods;
indeed, Hirshleifer (1983) lists several examples including dike
maintenance and provision of antimissile batteries. The same
public good framework is used for team production, e.g., Ray
et al. (2007), and it is fundamental to group competition models.1
Even monetary donations may not be perfectly substitutable, as
demonstrated by the insistence of the recent Sanders campaign
on small donations. Input complementarity for weaker-link and
better-shot public goods appears in Cornes (1993), Cornes and
Sandler (1996), Arce and Sandler (2001), and Cornes and Hartley
(2007), among others.

The dominant framework in these complete-information treat-
ments aggregates individual efforts into a team one through a CES
production function. Varying elasticity, one bridges best-shot and
weakest-link technologies, passing through summation, to explore
an interesting economic tradeoff. On the one hand, making in-
dividual efforts more complementary reduces free riding. On the

E-mail address: sbarbier@tulane.edu.
1 Recent contributions include Gould and Winter (2009), Kolmar and

Rommeswinkel (2013) and Cubel and Sanchez-Pages (2014), who provide many
real-world examples.

other hand, the technology itself becomes worse. Existing results
show either no effect of the elasticity parameter for homogeneous
agents (Cornes, 1993), or favor this second effect. In particular, in
their contest models with technology spanning the range between
weakest-link and perfect substitutes, Kolmar and Rommeswinkel
(2013) and Cubel and Sanchez-Pages (2014) show that increasing
complementarity within a single heterogeneous group reduces its
winning probability. Much remains unknown, especially between
perfect-substitutes and best-shot technologies. And these issues
are unexploredwith private information, except for the polar best-
shot, weakest-link, and perfect-substitutes technologies (Barbieri
and Malueg, 2014, 2015, forthcoming).

Rather than analyzing a CES production function, with its
intractable convolutions of exponentiated random variables, our
production function is a weighted average of order statistics.
This is in the spirit of Arce and Sandler (2001): ‘‘For weaker-
link public goods, the smallest contribution has the largest
marginal influence on utility, followed by the second smallest
contribution, and so on. The reverse holds for better-shot’’.2 We
characterize the unique symmetric equilibrium in differentiable,
strictly increasing strategies, providing sufficient conditions for
its existence. Focusing on the weighted average of smallest

2 See Arce and Sandler (2001, p. 496). They apply their formalization to full-
information matrix games examples.
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and largest order statistics, we analyze the effects of increasing
complementarity of efforts. In contrast with the contest results
previously reported, increasing complementarity raises public
good provision if themarginal cost of effort increases very rapidly.

2. Model

There are n ≥ 2 players, indexed by i, any of whom exerts effort
xi ∈ R+, independently and simultaneously, at cost c(xi). Assume
c ′ > 0, c ′′ > 0, c ′(0) = c ≥ 0, and limxi↑∞ c ′(xi) = ∞. For each
unit of the public good G, let i’s valuation be vi, which is private
information, so i’s effort is function of his/her valuation: xi = gi(vi).
Valuations are i.i.d. continuous randomvariableswith cdf F andpdf
f on [v, v̄], where v ≥ 0. Player i’s realized utility is vi × G− c(xi).

We describe the production technology for G using order
statistics. Within efforts x1, . . . , xn, denote the kth order statistic
as x(k), so x(1) ≤ x(2) ≤ · · · ≤ x(n). The public good level is
G =

n
l=1 p(l)x(l), where p(1), . . . , p(n) are non-negative weights

summing to 1. If p(l) = 1/n ∀l ∈ {1, . . . , n}, then, essentially,
we have the ‘‘summation’’ production function. The ‘‘weakest link’’
results if p(1) = 1 and p(l) = 0 ∀l ∈ {2, . . . , n}. If p(n) = 1 and
p(l) = 0 ∀l ∈ {1, . . . , n − 1}, then we recover the ‘‘best shot’’. The
simplest formof this technology,G = (1−p(n))x(1)+p(n)x(n), allows
for differentmarginal rates of substitution between the largest and
smallest contributions by varying p(n).

3. Analysis

We characterize symmetric Bayes–Nash equilibrium when the
common equilibrium strategy g displays g ′ > 0. For simplicity,
begin with p(k) = 1 and consider agent i that behaves as if
having valuation v′

i , while all other agents use g(·). Partition the
possible realizations of v−i ≡ (v1, . . . , vi−1, vi+1, . . . , vn) into
three regions according tom, the number of individual realizations
below v′

i :

1. m < k − 1. Equivalently, the (k − 1)th lowest valuation in
v−i – denoted with vi∗ – is above v′

i . Therefore, the kth lowest
valuation in (v′

i , v−i) is vi∗ . Since g ′ > 0, vi∗ determines G:
G = xi∗ = g(vi∗).

2. m = k − 1. Here, G = g(v′

i).
3. m > k − 1. Equivalently, the kth lowest valuation in v−i –

denoted with vj∗ – is below v′

i . Here, G = g(vj∗).

Standard results yield the density of vi∗ as fvi∗ (y) = (n −

1)f (y)
n−2
k−2


F(y)k−2(1− F(y))n−k. (Intuitively, there are n− 1 ways

for any one valuation to equal y while exactly k − 2 out of n − 2
valuations are below y.) The probability of k − 1 out of n − 1
values being below y is Pk(y) =

n−1
k−1


F(y)k−1(1−F(y))n−k, and the

density of vj∗ is fvj∗ (y) = (n − 1)f (y)
n−2
k−1


F(y)k−1(1 − F(y))n−1−k.

Therefore, i expects the public good quantity to be

GE
k(v

′

i) =

 v̄

v′
i

g(y)fvi∗ (y) dy + Pk(v′

i)g(v
′

i) +

 v′
i

v

g(y)fvj∗ (y) dy;

so

dGE
k(v

′

i)

dv′

i
= g(v′

i) [−fvi∗ (v′

i) + P ′

k(v
′

i) + fvj∗ (v′

i)]  
=0

+ Pk(v′

i)g
′(v′

i) = Pk(v′

i)g
′(v′

i), (1)

because

P ′

k(y) =


n − 1
k − 1


f (y)


(k − 1)(F(y))k−2(1 − F(y))n−k

− (n − k)(F(y))k−1(1 − F(y))n−k−1

= (n − 1)f (y)


n − 2
k − 2


(F(y))k−2(1 − F(y))n−k

−


n − 2
k − 1


(F(y))k−1(1 − F(y))n−k−1


= fvi∗ (y) − fvj∗ (y). (2)

More generally for p(k) ≠ 1, a player with valuation v acting as v′

has expected payoff

V (v′, v) = −c(g(v′)) + v

k

p(k)GE
k(v

′),

so
∂V (v′, v)

∂v′
= −c ′(g(v′))g ′(v′) + v


k

p(k)
dGE

k(v
′)

dv′

= g ′(v′)


−c ′(g(v′)) + v


k

p(k)Pk(v′)


  

by (1)

. (3)

The truth-telling first-order condition is

0 =
∂V (v′, v)

∂v′


v′=v

= g ′(v)


−c ′(g(v)) + v


k

p(k)Pk(v)


. (4)

Letting

β(v) ≡ v

k

p(k)Pk(v) = v


p(1)(1 − F(v))n−1

+

n−1
k=2

p(k)Pk(v) + p(n)(F(v))n−1


, (5)

if g ′ > 0, (4) gives

c ′(g(v)) = β(v), (6)

balancing marginal cost and benefit of effort. Since c ′(g(v)) in (6)
must increase in v, we have this equilibrium characterization:

Proposition 1. If c ≤ β(v) and β ′(v) > 0, then the only symmetric
equilibrium strategy g such that g ′ > 0 is

g(v) = (c ′)−1 (β(v)) . (7)

Proof. Necessity and uniqueness follow by (4) and (6), and c ≤

β(v). Sufficiency follows by (3) and (6), since

∂V (v′, v)

∂v′
= g ′(v′)


−c ′(g(v′)) + v


k

p(k)Pk(v′)



= g ′(v′)

−β(v′) +

v

v′
β(v′)


=

g ′(v′)β(v′)

v′
(v − v′),

so V (v′, v) is strictly quasi-concave in v′
∈ [v, v̄]. The marginal

benefit of effort x > g(v̄) is vp(n), but

vp(n) ≤ v̄p(n) =
by (5)

β(v̄) =
by (6)

c ′(g(v̄)) <
by c′′>0

c ′(x), (8)

making deviations above g(v̄) unprofitable. Deviations below
g(v) are similarly discouraged, thus completing the proof of
equilibrium. �

Lemma 1 gives a sufficient condition for β ′(v) > 0; intuitively,
inputs should be sufficiently substitutable.

Lemma 1. If p(1) ≤ p(2) ≤ · · · ≤ p(n), then β ′(v) > 0.
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