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a b s t r a c t

This paper is concernedwith economic analysis of first-price sealed-bid auctions with risk averse bidders.
The identification is based on exogenous variations in the number of bidders across auctions. We present
a shape constrained estimator of the bidding function, which satisfies the theoretical properties of passing
through origin, positivity andmonotonicity. The underlying utility function and bidder value distribution
are readily obtained from the estimated bidding function. Monte Carlo simulations demonstrate good
performance of the proposed estimator.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This study concerns economic analysis of auction data from
first-price sealed-bid auctions with risk averse bidders. Guerre
et al. (2000) studied the nonparametric identification of utility
function of first-price sealed-bid auctions under the independent
private value paradigm. They showed that the equilibrium bid-
ding strategy depends on bidders’ utility, value distribution, and
the number of bidders. Provided that number of bidders is inde-
pendent of value distribution, there exists a quantile-by-quantile
equality, through the inverse bidding function, across otherwise
identical auctions with different number of bidders. This inverse
bidding function identifies the latent utility function and value dis-
tribution.

Based on the identification result of Guerre et al. (2000) and
Kim (2015) suggested a method that nonparametrically calculates
the utility function via repeated applications of a contractor
mapping operator; Zincenko (2016) proposed a sieves estimator
and established its large sample properties. The current study
employs the same identification strategy and proposes a shape
constrained estimator of the inverse bidding function. This novel
estimator is constructed to be positive,monotone andpass through
the origin, satisfying the theoretical properties of the (inverse)
bidding function. The underlying utility function and bid value
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density are readily inferred from the estimated bidding function.
OurMonteCarlo simulations demonstrate goodperformance of the
proposed method.

2. Auction model and identification

In this section, we briefly describe the model of first-price
sealed-bid auctions and its identification. Readers are referred to
Guerre et al. (2000, 2009) and Campo et al. (2011) for rigorous
treatments. We consider first-price sealed-bid auctions of a single
indivisible good within the independent private values paradigm.
Each bidder has a private v drawn independently from a common
distribution F(·)defined on a compact support [0, v̄]with a density
f (·) > 0. For simplicity, we assume there is no reservation price
in the auctions. Bidders’ preference is represented by a utility
function U(·) satisfying U ′(·) > 0,U ′′(·) ≤ 0 and U(0) = 0.

In a first-price auction with n ≥ 2 bidders, bidder i with a
private value vi chooses to bid bi to maximize her expected utility.
In particular, her objective function is given by U(vi −bi)×Pr(bi ≥

bj,∀j ≠ i). There exists a strictly increasing symmetric Bayesian
Nash equilibrium strategy s(·) that satisfies

s′(vi) = (n − 1)
f (vi)
F(vi)

λ(vi − bi), vi ∈ [0, v̄], (1)

where λ(·) = U(·)/U ′(·). It can be shown that λ(0) = 0 and
λ′(·) > 0 on a compact support [0, v − b], where v − b corre-
sponds to the maximum value of a bidder’s gain; see e.g., Athey
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(2001) and Maskin and Riley (2003). Under a general utility func-
tion, (1) does not provide a closed form solution to the bidding
strategy. Extra information is needed for identification. For in-
stance, Lu and Perrigne (2008) assumed that the value distribution
is inferred from a separate set of ascending auctions with the same
value distribution; Campo et al. (2011) estimated the utility func-
tion under some parametric identifying assumptions.

Kim (2015) and Zincenko (2016) exploited identification based
on variations in the number of bidders across auctions with the
same value distribution. Let bn = s(v) be the bid corresponding to
value v in an auction with n bidders. Denote by Gn and gn the bid
distribution and density functions of this auction. One can derive
the inverse bidding function, from Eq. (1), as follows:

v = s−1(bn) = bn + λ−1


Gn(bn)
(n − 1)gn(bn)


. (2)

Next suppose there exist two otherwise identical auctions with
different number of bidders n1 and n2, which are assumed to be
independent of the value distribution. For j = 1, 2, let vnj(α) and
bnj(α) be the αth quantile of the value and bid distributions and
define

Rnj(α) =
α

(nj − 1)gnj(bnj(α))
, α ∈ [0, 1].

It follows that vnj(α) = bnj(α) + λ−1(Rnj(α)), j = 1, 2. Since the
two auctions share a common value distribution, we have

bn1(α)+ λ−1(Rn1(α)) = bn2(α)+ λ−1(Rn2(α)), ∀α ∈ [0, 1]. (3)

Kim (2015) interpreted this quantile-by-quantile equality of
the inverse bidding function as a transformation and established
a contraction mapping that converges to the underling utility
function. He proposed a method of calculating the utility function
based on iterative applications of an contractor operator. Zincenko
(2016) considered the more general case of auctions with more
than two different number of bidders and proposed an estimator
that minimizes a certain global distance between the value
quantile functions across auctions differing in number of bidders.
He employed a sieve based estimator and established its large
sample properties.

3. Estimation

Similarly to Kim (2015) and Zincenko (2016), we base
identification on variations in number of bidders across auctions.
To ease exposition, we present the case with two different bidder
numbers; generalization to more than two bidder numbers is
straightforward. Following Kim (2015), we make the simplifying
assumption that bid distribution and density are known when
introducing our estimator in this section. Interested readers are
referred to, e.g., Guerre et al. (2000),Marmer and Shneyerov (2012)
and Luo and Wan (forthcoming) for the estimation of bid density
and related quantities.

Recall that λ is a bounded increasing function with λ(0) = 0.
It follows that λ−1 shares the same set of properties. We seek
a nonparametric estimator that satisfies these properties. Our
strategy is to employ an integration transformation of a smooth
non-negative function as follows

Ψ (x) =

 x

0
ψ(y)dy,

where ψ : R → (0 ∪ R+) and ψ(x) < ∞ for x ∈ (0,∞). It can
be easily verified that Ψ (0) = 0, 0 ≤ Ψ (x) < ∞ and Ψ ′(x) =

ψ(x) ≥ 0 for x ∈ (0,∞). Ramsay (1998) used this integration
device to model monotone functions. This approach was adopted
by Zhang et al. (2011) and Liu et al. (2015) to model monotone

auction bidding processes. Henderson et al. (2012) considered a
kernel-based monotone estimator of bidding function.

Ramsay (1998) set ψ(x) = exp(w(x)), where w is a smooth
real valued function. In this study, we choose to use ψ(x) =

w2(x) mainly because it offers the advantage that Ψ admits a
simple analytical form when w is a polynomial or spline function.
The polynomial case is particularly simple to handle; for instance,

w(x) = c0+c1x yieldsΨ (x) = c20x+c0c1x2+
c21
3 x3. Generally under

a K -degree polynomialw(x; c) =

K
s=0 csx

s

, we have

Ψ (x; c) =

 x

0
w2(y; c)dy =

K
s=0

K
t=0

csct
s + t + 1

xs+t+1, x > 0.

Alternatively, we can use a spline function. For instance, the
commonly used truncated power series is given by

w(x; c) =

K
s=0

c1,sxs +

J
s=1

c2,s(x − zs)K+, (4)

where (x)+ = max(0, x) and 0 < z1 < · · · < zJ < ∞ are a set
of spline knots. Although slightly more tedious, the integration of
a squared truncated power series also admits a simple analytical
form, which remains a truncated power series; see Appendix for
details.

We use Ψ (x; c) =
 x
0 w

2(y; c)dy to approximate λ−1(x), where
w(·; c) is a polynomial or spline function given above. We then
construct an estimator based on the quantile-to-quantile equality
(3). Let

vnj(α; c) = bnj(α)+ Ψ (Rnj(α); c), j = 1, 2.

We consider a minimum sum of squares estimator

min
c

2
j=1


α∈A


vnj(α; c)− bnj(α)− Ψ (Rnj(α); c)

2
, (5)

where j = 3 − j, j = 1, 2 and A is a set of user selected quantile
levels.

The optimization problem (5) can be solved by a standard
nonlinear least squares routine or a general purpose optimization
routine. Since Ψ (·; c) = Ψ (·; −c), we impose the identification
restriction c0 ≥ 0. Denote the solution to (5) by ĉ . The estimated
inverse bidding function is given by λ̂−1(·) = Ψ (·; ĉ). We can then
proceed to calculate λ̂(·) and its associated utility function. Under
the condition that λ(·) = U(·)/U ′(·) and U(1) = 1, we have

Û(x) = exp
 x

1

1

λ̂(y)
dy


, x ∈ [0, v − b].

Lastly, the latent value associated with a bid bn in an auction with
n bidders is estimated as

v̂(bn) = bn + λ̂−1(Rn(Gn(bn))), n = n1, n2.

The value density can then be estimated, parametrically or
nonparametrically, based on all estimated values pooled across the
two types of auctions.

4. Monte Carlo simulations

We follow the experiment design of Kim (2015) in our Monte
Carlo simulations. Two value distributions are considered: (i) the
exponential distribution with mean 3, truncated from above at 10;
(ii) the standard log-normal distribution, truncated from below at
its 5% quantile and from above at its 95% quantile, and rescaled
to be in [0, 10]. In all experiments, bidders’ utility is taken to be
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