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a b s t r a c t

The purpose of this note is to discuss the envelope relationship between long run and short run cost
functions. It compares the usually presented relationship with one of different form and implications,
resulting from a simple production function and constant prices. It points out in particular that the
tangency condition between the short and long run total cost functions does not necessarily hold always.
The note also shows that a given value of the fixed factor might support in the long run a whole range of
levels of output.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Wewish to consider the relation between the short run and the
long run cost functions in the context of two examples, in which
the factors of production can assume any non-negative values. The
first example gives rise to the usual textbook diagram while the
second one does not. It is precisely the possibility of the second
example that is the reason for this note. A main implication of the
analysis is that the tangency condition between the short and long
run total cost functions does not necessarily hold always. Also there
is a given, optimal value of the fixed factor which in the long run
will support all outputs beyond a particular level. Of course the
quantity of the variable factor will adjust itself.

In the economics literature there have been some discussions
of applications of a generalized envelope theorem (see for example
Benveniste and Scheinkman, 1979, Milgrom and Segal, 2002, Mas-
Colell et al., 1995). On the other hand, in general in economics,
and in particular in advanced textbooks, the envelope property
is discussed in the context of equality between the tangents of
short run and long run cost functions, (see Luenberger, 1995,
Mankiw, 2001, Pindyck and Rubinfeld, 2005, Simon and Blume,
1994, Varian, 1992, 2003). Here we engage in a generalization of
the envelope theorem where the possibility of a corner solution is
also present.
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2. Examples of the envelope theorem

We discuss the following two examples. The short run and long
run total cost functions are denoted respectively by C∗

S and C∗

L .

Example 1. We consider the simple model Y = xα
1 x

β

2 where
α, β > 0 and α + β = 1, and x1 ∈ R≥0 the variable and
x2 ∈ R≥0 the fixed inputs in the short run. For the priceswe assume
p1, p2 > 0. We show below that the relation between the cost
functions is the conventional one.
The short run

Given the value of x2 we obtain the demand function x1 =
Y
xβ2

1/α

, and the short run cost function, C∗

S = p1 Y1/α

xβ/α
2

+p2x2 which

is rising and convex in Y .
The short run average and marginal cost functions are,

respectively, A∗

S = p1 Yβ/α

xβ/α
2

+ p2
x2
Y andM∗

S = p1 1
α

Yβ/α

xβ/α
2

.

The long run
In order to obtain the long run cost function, C∗

L , where x2 is also
allowed to vary continuously, we can minimize C∗

S with respect to

x2. We have the first order condition dC∗
S

dx2
= −p1

β

α
Y1/α

x(β/α)+1
2

+p2 = 0,

and second order condition, dC∗2
S

dx22
> 0.

Solving the first order condition we obtain x2 =


p1 β

α p2

α

Y and

substituting into C∗

S we obtain the long run cost function C∗∗

S = C∗

L
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Fig. 1. The cost functions for Y = xα
1 x

β

2 with α, β > 0, α + β = 1 and p1, p2 = 1.

=


p1


α p2
p1 β

β

+ p2


p1 β

α p2

α

Y =


p1
α

α
p2
β

β

Y , where C∗∗

S =

minimumC∗

S .
The functionC∗

L can also be obtained from the costminimization
problem:

Minimize C = p1x1 + p2x2
Subject to

Y = xα
1 x

β

2 , x1, x2 ≥ 0,

where p1, p2, Y are fixed.
It is easy to see that the long run demand functions of the inputs

are x1 =


α p2
p1 β

β

Y and x2 =


p1 β

α p2

α

Y , where the expression for

x2 is identical to the one that results from the condition dC∗
S

dx2
= 0.

These demand functions imply, of course, the expression of C∗

L
obtained above.

The long run average and marginal cost functions are:

A∗

L = M∗

L =


p1


α p2
p1 β

β

+ p2


p1 β

α p2

α


=


p1
α

α
p2
β

β

.

C∗

L is the envelope of the C∗

S curves and A∗

L that of the A∗

S ones.
In both cases every point of the envelope curve corresponds to a
point of a unique short run curve. This is the usual case when the
fixed factor of production can vary continuously.

The tangency condition between theminimumof the C∗

S convex
curves, given Y , and C∗

L follows from the fact that all functions are
smooth and C∗

L is obtained from a minimization problem with an
interior solution. This is looked at again in the Appendix.

The connection between C∗

S and C∗

L is shown diagrammatically
in Fig. 1, where without loss of generality we have taken1 p1, p2 =

1. The resulting relation between A∗

S and A∗

L is shown2 in Fig. 2. At
the point of equality of the total cost curveswe also haveM∗

S = M∗

L .

1 All figures are drawn under the assumption that p1 = p2 = 1.
2 We note that for α + β > (<)1, i.e. for the case of increasing (decreasing)

returns to scale, the C∗

L curve will be concave (convex), and the A∗

L one will be
decreasing (increasing). Also, in the case of increasing returns to scale the declining
A∗

L curve will be convex.

This follows from the fact that the marginal cost is the derivative
of the total cost, and from the tangency condition between the C∗

S
and the C∗

L curves. This equality holds precisely for that level of
output. The tangency of the total curves implies the tangency of
the average functions. We return to this in the Appendix.

Now we wish to investigate the shape of the A∗

S curve. The first
and second order derivatives of A∗

S with respect to Y are

dA∗

S

dY
= p1

β

α

Y (β/α)−1

xβ/α

2

− p2
x2
Y 2

and
d2A∗

S

dY 2
= p1

β

α


β

α
− 1


Y (β/α)−2

xβ/α

2

+ p2
2x2
Y 3

.

The sign of d2A∗
S

dY2 is the same as that of p1
β

α


β

α
−1


Yβ/α

xβ/α
2

+p2
2x2
Y .

It follows that for β

α
− 1 ≥ 0 the A∗

S curve is convex throughout.
Next, we wish to investigate the case β

α
− 1 < 0. First we see

what happens around the point of tangency of A∗

S with A∗

L . At that

point we have dA∗
S

dY =
dA∗

L
dY = 0 which implies Yα/β

xα/β
2

=
α
β

p2
p1

x2
Y , and

substituting into the expression p1
β

α


β

α
− 1


Yβ/α

xβ/α
2

+ p2
2x2
Y we get

the equality p1
β

α


β

α
− 1


α
β

p2
p1

x2
Y + p2

2x2
Y =


β

α
− 1


p2

x2
Y + p2

2x2
Y ;

this is of the same sign as β

α
+ 1 which is positive.

Therefore at the point of tangency with A∗

L the function A∗

S is
convex.

Next we look at the total behaviour of the function d2A∗
S

dY2 . As
noted above, its sign is determined by that of the expression

p1
β

α


β

α
− 1


Yβ/α

xβ/α
2

+ p2
2x2
Y . Due to the fact that


β

α
− 1


< 0,

for sufficient large Y it turns and stays concave. The concave part is
beyond the point of tangency and it is of course rising to the right
and falling to the left of this point.

Example 2. The production function is now given by Y = x1 +

2x0.52 , where, the non-negative, x1 is the variable and x2 the fixed
inputs in the short run. The isoquants correspond to fixed Y and
they have slope dx1 + x−0.5

2 dx2 = 0. They are shown in Fig. 3.
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