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a b s t r a c t

The price commitment model of Maskin and Tirole (1988) provides an extensively cited foundation for
Edgeworth cycles. We examine the viability of Edgeworth cycles when price commitment is partial in the
sense that a subset of firms are committed to price in each period. If multiple firms are not committed in
each period, then the existence of Edgeworth cycle equilibria requires a demanding convexity condition
on the profit function.
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At least since Castanias and Johnson (1993), the Maskin and
Tirole (1988) (hereafter, MT) theory of price commitment has
been invoked to explain asymmetric cycles in prices known as
Edgeworth cycles. Under MT, two firms produce identical prod-
ucts and alternate in choosing prices from a discrete price grid.
Equilibria exhibiting Edgeworth cycles involve two phases. Firms
marginally undercut their rival when their rival is committed to a
high price. At low prices, the incentive to undercut dissipates, and
firms have an incentive to relent by raising price. The result is a
highly asymmetric cycle in which prices fall gradually and then are
rapidly restored.

Sequential timing plays a critical role inMTby allowing a firm to
marginally undercut, confident that its rival is committed to price.1
However, the ideal of strictly sequential timing is commonly vio-
lated in oligopoly. In the time taken to collect market data, assess
the situation, decide on a course of action, and implement a change,
rivals may have an opportunity to act.2 We extend the theory to
admit partial price commitment in the sense that a subset of rivals
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1 In computationally extending the MT model to three firms, Noel (2008) main-
tains strictly sequential timing. Each firm adjusts price every three periods.
2 For multi-site firms with centralised decision making, the implementation lag

alone can be lengthy. For example, Wang (2009) observes that in the retail petrol
market of Perth in 2000, between 11am and 1pm, ‘‘48 of 73 BP sites hiked price to
exactly 92.9 cents’’, with 13 of these changes occurring between 11am and noon.
BP is a major retailer of petrol in this market, and controls a network of retail sites.
The above statement implies that, for the majority of BP sites, it took more than an
hour to implement a price change.

may be committed to price when a firm adjusts price. If multiple
firms are not committed in each period, then the existence of Edge-
worth cycle equilibria requires a demanding convexity condition
on the profit function.

1. Partial price commitment

Over an infinite horizon, n firms compete for a homogeneous
product by choosing prices from a discrete price grid. Firms dis-
count the future at the common rate δ. We consider two sepa-
rate timing protocols. Timing is deterministic in Section 1.1 and
stochastic in Section 1.2. We first describe the profit function,
which is common to both settings.

Given a price pj and a market demand function D, industry
profits are given by

π (pj) = (pj − c)D(pj).

We normalise marginal costs to zero, c = 0. In each period, the
market is shared equally between all firms charging the lowest
price. Given a price vector p = (p1, . . . , pn) with lowest price pj,
ifm firms set the price pj, then profits for firm i are given by

πi(p) =

{
π (pj)/m if pi = pj
0 if pi > pj.

1.1. Deterministic timing

In each period t , each firm in the non-empty set Jt has the
opportunity to adjust price, while the remaining n−|Jt | firmsmust
wait for this privilege. Every firm can adjust price every T periods,
and hence Jt = Jt+kT , for any integer k. The ability of each firm to set
price knowing their rival is committed to her price plays a key role
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in the MT model. This special case applies when n = T = 2 and
|Jt | = 1 for all t . If n > T , then there are periods in which multiple
firms simultaneously set price.

Like MT, we restrict attention to Markov strategies in which
firms condition only on payoff-relevant states. In period t , the
prices committed by rivals in previous periods, pj̸∈Jt , are payoff
relevant. We summarise the dynamic problem faced by firm i ∈ Jt
when contemplating her period t choice of price via the Bellman
equations

V 0
i (pj̸∈Jt ) = max

pi
Epj∈Jt \i

(
πi(p) + δV T−1

i (pj̸∈Jt+1 )
)
, (1)

V τ
i (pj̸∈Jt−τ ) = Epj∈Jt−τ

(
πi(p) + δV τ−1

i (pj̸∈Jt−τ+1 )
)
,

τ = 1, . . . , T − 1, (2)

where expectations are taken over the (possibly mixed) strategies
of rivals. V 0

i (pj̸∈Jt ) is the value of firm i when it is her turn to
choose price, given the vector of committed prices pj̸∈Jt . Her price
pi influences her profits today and her continuation value V T−1

i . V τ
i

is the value of firm i when she has to wait τ periods for the next
opportunity to adjust price.

We examine the viability of Markov perfect equilibria (MPE)
exhibiting Edgeworth cycles. Given prices p1 > p2 > · · · > pk
with k ≥ T + 2, consider symmetric strategies of the form

RD
i (pj̸∈Jt ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ps+1 if min

j̸∈Jt
pj = ps, s = 1, . . . , k − 1,

p1 with probability µi(pj̸∈Jt )
pk with probability 1 − µi(pj̸∈Jt )

}
if min

j̸∈Jt
pj = pk.

(3)

We use the shorthand ps to refer to states in which minj̸∈Jt pj =

ps, for s = 1, . . . , k. The reaction functions RD incorporate the
essential elements of an Edgeworth cycle. In the undercutting
phase, prices follow a gradual downward trajectory, and in the
relenting phase, prices jump to the top of the cycle in a single step.
Firms adopt mixed behavioural strategies at the cycle trough, pk. If
she moves at the trough, firm i raises price to p1 with probability
µi(pj̸∈Jt ), and sets pi = pk otherwise. This results in a war of
attrition at the trough as in MT.3

The strategies in (3) place no restrictions on the reaction func-
tions for state vectors that are off the equilibrium path. They also
contain, as a special case, the strategies employed by MT in their
constructive proof of the existence of Edgeworth cycle equilibria
in the two firm problem. In particular, under the MT strategies,
pk = 0, p1 is above the industry monopoly price, and the price grid
is evenly spaced. In Section 1.3, we discuss generalisations of (3).

Proposition 1. Let n = maxt |Jt |. There exists noMPEwith strategies
of the form (3) if, for any s = 2, . . . , k − T ,

π (ps) <

T−1∑
τ=1

(
(n − 1)π

(
ps+τ

))
+
(
n − δT

)
π
(
ps+T ) . (4)

The proof relies on a revealed preference argument. According
to RD, if the lowest committed price is ps−1, then ps is a best
response, while ps+1 is not. Setting a price of ps provides a share
of industry profits at this price, while setting ps+1 instead would
deliver the entire market. For firm i to resist the temptation to
undercut more aggressively, then either the value function must
decline sharply in the lowest committed price or the industry profit
functionmust be very convex.We can use RD to calculate the shape

3 We leave µi(pj̸∈Jt ) unspecified to admit a range of behaviour in the war of
attrition. As noted by Noel (2008), with n > 2, false starts to the cycle and reversion
to the trough are possible outcomes. We do not take a position on the nature of the
war of attrition, and focus instead on the undercutting phase of the cycle.

of the value function, allowing us to isolate the conditions implied
for the industry profit function.

In theMTmodel, the existence of anMPEwith Edgeworth cycles
relies on a sufficiently fine price grid. According to Proposition 1, if
the price grid is fine and n ≥ 2, the profit function must be convex
in prices to support the strategies RD. Profits are generally concave
in prices, suggesting that price commitment is unlikely to underpin
Edgeworth cycles if n ≥ 2.

Fixing n, a greater commitment length T relaxes the convexity
condition (4) by reducing the number of firms |Jt | adjusting price
in period t . In the special case considered by MT and Noel (2008),
T = n, |Jt | = 1 for all t , and (4) is trivially violated. If instead firms
adjust prices more frequently and n > T , then price commitment
is unlikely to explain Edgeworth cycles.

1.2. Stochastic timing

In each period, each firm has an opportunity to set price with
independent probability x ∈ (0, 1). The timing of play is as follows.
At the beginning of each period t , each player learns privately
whether they are able to adjust price in the current period. With
probability x, each player chooses a new price; otherwise, she
is committed to the last price she set. All prices then become
public information, profits are received, and the period ends. As x
approaches zero, the model converges to full commitment: when
firm i moves, the conditional probability that her rivals also move
approaches zero. We view this specification as a natural compro-
mise between sequential and simultaneous play. Markets charac-
terised by both frequent decision making and decision lags do not
neatly match either sequential or simultaneous timing, but could
be approximated by stochastic timing.

Because each firm may be committed to a previously set price,
the entire price vector is payoff-relevant. Firm i’s dynamic problem
is determined by the Bellman equations

Ui(p) = xVi(p) + (1 − x)Wi(p), (5)
Vi(p) = max

pi
Wi(p), (6)

Wi(p) = Epj̸=i (πi(p) + δUi(p)) . (7)

Ui(p) is the value to firm i at the beginning of a period t , given the
price vector p. With probability x she has an opportunity to adjust
price in the current period, and her valuation after this revelation
is given by Vi. With probability 1 − x, firm i is committed to price
and her valuation is determined byWi. Expectations are taken over
the ability of rivals to adjust prices in the current period and the
(possibly mixed) strategies of rivals.

Given prices p1 > p2 > · · · > pk, consider symmetric strategies
of the form

RS
i (p) =

⎧⎪⎨⎪⎩
ps+1 if min

j
pj = ps, s = 1, . . . , k − 1,

p1 with probability µi(p)
pk with probability 1 − µi(p)

}
if min

j
pj = pk.

(8)

We will use ps to refer to states in which minj pj = ps, for
s = 1, . . . , k. As before, off-path reactions are unconstrained, the
principal features of an Edgeworth cycle are captured, and the
strategies employed by MT are contained as a special case.

Proposition 2 examines the conditions required on the profit
function for an MPE based on the strategies RS . We set up the
proposition by introducing the function γ (n, x, δ):

γ (n, x, δ) =
1 −

∆
n

( 1−δ
1−∆

)
h(n, x)

−
δx

1 − ∆
, (9)
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