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1. Introduction

In recent years qualitative response models have become pop-
ular in time series analysis. In the financial context, in particular,
they have been applied in connection with the sign of asset return
forecasts, as these may lead to profitable speculative positions
and correct hedging decisions. See, among others, Levich (2001).
While, apriori, this class of models seems to be less informative
than continuous response models, Leung et al.’s (2000) detailed
comparative study between binary and continuous response mod-
els revealed that the former outperform the latter in its ability to
generate trading profits.

Sign forecastability has been assumed to be driven mainly by
conditional mean dynamics of the underlying process in most
recent studies on this issue. For instance, Nyberg (2011) exam-
ined the ability of the binary dependent dynamic probit model to
predict the direction of monthly excess stock returns, extending
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Kauppi and Saikkonen’s (2008) model. He concluded that in terms
of out-of-sample performance, binary models can be useful in asset
allocation decisions, especially when the mean dynamics resemble
an error correction specification.

Binary choice models were shown to be useful in the con-
text of decomposition—type models. For instance, Anatolyev and
Gospodinov (2010) expressed the financial asset return as a prod-
uct of its sign and its absolute value. The two components were
modeled separately as a copula before a joint forecast was con-
structed. Earlier, Rydberg and Shephard (2003) specified the stock
return as a product of two binary variables, defining the returns
direction and market activity, and multiplied by a process which
defines the size of a price change.

Previous findings on modeling conditional heteroscedasticity
in qualitative response models showed that the volatility parame-
ters are statistically significant and may have a good explanatory
power. Specifically, Deuker (1999) modeled the discrete changes
in the bank prime lending rate by a dynamic ordered probit with
Markov-switching conditional heteroscedasticity. His results indi-
cated that conditional heteroscedasticity plays an important role
in explaining the data. Broseta (2000) reported a good fit for
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a learning model in which the latent residuals were allowed to
follow an ARCH(1) process (Engle, 1982). Hausman and Lo (1992)
estimated a model for stock price changes with heteroscedastic
ordered probit by dividing the price changes into eight intervals.

In the same line of literature, Christoffersen and Diebold (2006)
suggested that the volatility and other high-order conditional
moments may produce sign dependence, drawing the theoretical
connection between the asset return volatility dynamics and its
sign forecastability. From their study it follows that directional
forecasts could be inferred from the volatility dynamics even when
the conditional mean is constant. There are numerous other studies
that have documented the strong dependence of asset returns
volatility. For surveys of the empirical evidence and volatility mod-
eling in finance, the reader is referred to Mikosch et al. (2009) and
Bollerslev et al. (1992).

To this end, we consider in this paper the model

Ye=1Uxly+e >0} t=1,...,n, (1)

where 1 {-} is the indicator function which takes the value of unity
if the condition in the brackets is satisfied and zero, otherwise, x;
isa K x 1 vector of explanatory variables which are assumed to be
ergodic stationary, y is a K x 1 vector of unknown parameters, and
for all t and s, conditional on F;_; and x, & ~ F(0, atz), where F;

is the increasing sequence of o-fields generated by {gj};1 and F is
a symmetric CDF on which conditions are given in Assumption A
below. The conditional variance, 0[2, is merely assumed to satisfy
some very mild regularity conditions so that the class of het-
eroscedasticity models allowed is very general and includes in it, as
a special case, the prominent GARCH(p, q) specification (Bollerslev,
1986). For this model, under the classical assumptions including
a fixed o2, Vt, the main workhorse for estimating this model is
undoubtedly the probit maximum likelihood estimator (MLE), if F
is normal, or by Logit, if F is logistic, although other alternatives
exist, such as Horowitz’s (1993) semiparametric estimator. It is
well known that under these restrictive assumptions (i.e., which
include homoscedasticity of ¢;), the MLE is consistent and asymp-
totically efficient. However, when the true data generating process
follows (1) but is misspecified to have homoscedastic ¢;, the MLE
will no longer be consistent. See for instance, Greene (2012, p.
693) and Yatchew and Griliches (1985)—the latter developed an
approximation for the probit MLE bias in the presence of a simple
heteroscedasticity form in a cross sectional context. We show in
this paper that this misspecification will result in a positive scaling
effect on the asymptotic mean of the MLE. This form of inconsis-
tency under the general setting has not been known hitherto. The
implication is that, surprisingly, the MLE—based predictions will be
unaffected by the misspecification. In other words, even if condi-
tional heteroscedasticity of a general form will be ignored and the
model will be estimated by the MLE, the predictions based on the
(wrong) estimator will be unaffected. This result is of importance
and practical relevance because it has been widely acknowledged
that the volatility of asset returns varies across time.

Our main Theorems corroborate some of the simulation results
reported by Munizaga et al. (2000), which revealed the remark-
able robustness of the misspecified Probit and Logit model—based
predictions to conditional heteroscedasticity. Moreover, we show
that t-tests can be based on the MLE with reference to the standard
normal distribution in spite of the misspecification.

The main results of the paper are given in the following Sec-
tion. Simulations are reported in Section 3 and final remarks are
provided in Section 4.

2. Main results

By F:_1 we denote the o-field generated by &;_1, &;_», .... We
shall make the following assumption.

Assumption A.

(1) Thedatagenerating functionis givenbyy; = 1{x;y +&; > 0}.

(2) For all t and s, conditional on F;_; and x;, & has a zero
mean, conditional variance atz, 0 < o < oo and cumula-
tive distribution function (CDF) F. The CDF F is smooth and
strictly monotonic with a bounded density f which has R
as its support and which is symmetric. In addition, F (v) is
concave for v > 0.

(3) The true parameter vector yy is an element of the interior of
a convex parameter space I" C RK,

(4) The K x 1 vector x; is finite, strictly stationary and ergodic,
and is not contained in any linear subspace of R¥, Vt.

(5) The process {o;} is strictly stationary and ergodic and inde-
pendent of x;, for all t and s.

We remark that Assumption A(2) holds for the normal and
logistic distributions. The misspecified log-likelihood function in
which conditional heteroscedasticity is ignored and oy is set to
unity Vt, is given by

n

Ly)=> 1),
t=1

where

I (v) = yelog (F*(x,y)) + (1 — yo)log (1 — F*(x,y)) (2)

and F* is the CDF of a random variable with a CDF F after it
has been normalized to have mean zero and unit variance. Sim-
ilarly, by f* we denote the density corresponding to F*. Let y, =
arg maxrl,(y ). To emphasize, ¥, is the maximizer of a misspecified
log-likelihood function. By E,, we denote an expectation taken
under the true parameter value. The main result follows below.

Theorem 1. Under Assumption A, there exists a finite and positive p
which satisfies

1
EJ/O (Ot)

0<

<p <E, (l) < 00, (3)

such that , LN £Yo.

The MLE of the correct likelihood,' say 7, is consistent. If, given
X, = X, the researcher wishes to base the predictive value, y,
of y¢, according to the rule y, = 1{F*(x'y,/o;) > 0.5}, then for
large n, the rule is equivalent to 1 {x/ Yo > 0}. Basing the prediction
on y, instead does not affect the result because for large n it is
tantamount to

Hpx'yo >0} =1 {x/yo > O}.

In other words, the misspecified MLE-based prediction remains
unaltered even though ¥, is inconsistent. This result corroborates
some of the simulation results of Munizaga et al. (2000).

When the classical assumptions including homoscedasticity
hold and the usual normalization, oy = 1 V¢, is imposed, it follows
from (3) that p = 1, i.e, that the MLE based on the correct
specification is consistent. Therefore, Theorem 1 is a generalization
of the standard result.

Proof of Theorem 1. The proof can be made by verifying the
conditions of Theorem 2.7 of Newey and McFadden (1994), the
difference being that instead of the true parameter y;, we will show

1 By ‘correct likelihood’ it is meant that, among other things, o; is correctly
specified. In general, it would be a function of a finite dimensional vector of
parameters, as in the GARCH(p, q) process, for instance, and its parameters would
have had to be estimated jointly with y.
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