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h i g h l i g h t s

• Presence of a unit root in individual time series is required for cointegration.
• Cointegration makes standard unit root tests more likely to reject a unit root null.
• The paradox arises because cointegration induces a moving average (MA) component.
• The cointegration-induced MA component causes unit root tests to be oversized.
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a b s t r a c t

Cointegration among times series paradoxically makes it more likely that a unit test will reject the unit
root null hypothesis on the individual series. This occurs because at least one series in the system has a
negative moving average component.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Standard practice when estimating relationships among time
series variables is to first test the individual series for nonstation-
arity. If the individual series are concluded to have unit roots, one
then tests for cointegration. This advice was first dispensed in En-
gle and Granger’s (1987) seminal cointegration paper and has been
repeated numerous times since.1 This paper demonstrates that this
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1 For example, see Kennedy (2008, p. 303).

practice is paradoxical. When data are cointegrated, unit root tests
are more likely to reject the unit root hypothesis.

The paradox arises because cointegration generates a moving
average (MA) component in the univariate representation of a time
series. It is well known that two variables that are cointegrated can
be rewritten as a linear combination of two series, one of which
has a unit root and the other of which is stationary. Granger and
Morris (1976) showed that such linear combinations typically have
a moving average component even if the individual series have no
MA structure. It is also well known that MA dependence causes
over-rejection in unit root tests (Ng and Perron, 2001). The time
series literature has not previously connected these results to unit
root testing when data are cointegrated. That is the contribution of
this paper.
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The most common unit root tests are of the augmented
Dickey–Fuller (ADF) type. Elliott et al. (1996) show that, if
generalized least squares is used to detrend the time series, then
the ADF test has desirable asymptotic power properties.2 This
result gives rise to the DF-GLS test. In this paper, we focus on lag
selection sowe exclude deterministic components from themodel.
Elliott et al. (1996) write that the asymptotic power of this test
‘‘virtually equals the (upper) bound when power is one-half and
is never far below’’.

Said and Dickey (1984) demonstrate that ADF tests have
correct size if enough lags are included in the ADF specification.
Several information criteria (IC) have been proposed to select
the appropriate number of lags, including the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC). Ng
and Perron (2001) demonstrate that AIC and BIC select too
few lags, and they propose the Modified Akaike Information
Criterion (MAIC). An alternative approach is to determine lag
length using hypothesis testing, e.g., use only those lags with
statistically significant coefficients. Our paper demonstrates that
neither hypothesis testing nor any of the three IC are sufficient to
eliminate size distortions when data are cointegrated.

2. Example: a triangular model

The triangular model is the prototypical example model in
the time series literature (e.g., Phillips, 1991). Consider a pair of
cointegrated random variables, yt and xt , defined such that

yt = xt + zt
xt = xt−1 + ε1t
zt = φzt−1 + ε2t

(1)

where |φ| < 1, ε1t ∼ i.i.d. N(0, 1), ε2t ∼ i.i.d. N

0, σ 2


1 − φ2


,

and E[ε1sε2t ] = 0 for all t , s. We impose a coefficient of one on xt
and a variance of one on ε1t because the data can always be rescaled
to achieve these restrictions. We parameterize the variance of ε2t
so that var[zt ] = σ 2 regardless of φ. Note that yt and xt are not
cointegrated when φ = 1. The farther φ is from one, the less
persistent are deviations from the cointegrating relationship and
therefore the stronger is the cointegration.

Granger and Morris (1976) prove the following result for
finite-order autoregressive moving average (ARMA) processes. If
xt ∼ ARMA(p1, q1) and zt ∼ ARMA(p2, q2), then (xt + zt) ∼

ARMA(m, n), where m ≤ p1 + p2 and n ≤ max(p1 + q2, p2 + q1).
The expressions for m and n generally hold as equalities. Only in
special cases do some terms cancel out to make it an inequality.
This occurs, for example, if the ARMA coefficients are the same
in the two summands. Thus, if zt has positive variance, then the
Granger and Morris result implies that yt has a moving average
component in general.

The univariate ARMA representation of yt is3

1yt = φ1yt−1 + vt − θvt−1 (2)

where θ =
1−

√
1−4ω2

2ω > φ, ω =
φ+σ 2(1−φ2)

1+φ2+2σ 2(1−φ2)
, and vt is a

white noise process. Augmented Dickey–Fuller tests rely on the
autoregressive representation of the time series, which is

1yt = (φ − θ)1yt−1 + θ(φ − θ)1yt−2 + θ2(φ − θ)1yt−3

+ · · · + vt . (3)

2 They write in their conclusion ‘‘these tests are essentially point optimal among
tests based on second-order sample moments’’.
3 Note that (1−φL)1yt = ut , where ut = (1−φL)ε1t+(1−L)ε2t . Now ut is anMA

(1) process with E[u2
t ] = (1+φ2)+2σ 2(1−φ2) and E[utut−1] = −φ−σ 2(1−φ2).

The expression for θ can then be derived from method of moments.

The number of autoregressive lags required to fit this process will
be large if θ is large. Because θ is increasing in φ, a large θ implies
that φ is close to 1.

Fig. 1 shows the size of ADF tests for a unit root for various
values of the parameters φ and σ and for two different sample
sizes. The left column reports rejection rates for parameter
settings corresponding to those in Figure A1 in the Supplementary
Appendix (T = 100). The right column shows how rejection rates
change as the sample size increases (T = 500). The four lines
in each figure represent the rejection rates that result when the
number of lags is chosen by AIC, BIC, MAIC, or hypothesis testing.

There is a clear rank order to the different IC: MAIC is better
than AIC, and AIC is better than BIC. The t-test procedure performs
similarly to AIC for T = 500 and slightly better than AIC for
T = 100. However, the ADF test is oversized in all four cases. The
worst size distortion occurs for mid to high values of φ, i.e., when
the cointegration is relatively weak.4 Recall from (2) that θ is
increasing in φ and from (3) that the number of autoregressive
lags required to fit this process will be large if θ is large. These
facts indicate that all lag selection methods choose too few lags to
control for the MA term.5

There is no size distortion when there is no cointegration (φ =

1), which demonstrates that cointegration is the source of the
problem. Cointegration causes the size distortion.

3. The general case

Consider the n × 1 vector Xt , which follows the cointegrated
vector autoregression

Φ(L)Xt = εt , εt = [ε1t , . . . , εnt ]
′ (4)

where E[εt ] = 0, E[εtε
′
t ] = Ω , and E[εisεjt ] = 0 for each i, j =

1, 2, . . . , n and all s ≠ t .
Cointegration implies |Φ(L)| = (1 − L)d

n−d
j=1 (1 − φjL) for

some 0 < d < n, where |φj| < 1 for all j (Lütkepohl,
2005, pg. 243). DefiningΦ(L)+ as the adjoint ofΦ(L), we can write
|Φ(L)|Φ(L)−1

= Φ(L)+, which implies

n−d
j=1

(1 − φjL)1Xt = C(L)εt (5)

where C(L) ≡ (1 − L)1−dΦ(L)+. This representation implies that
each series is an ARMA process because both

n−d
j=1 (1 − φjL) and

C(L) are finite polynomials. To eliminate the MA component, we
need the scalar polynomial on the left hand side to cancel out the
autocorrelations implied by each right hand side polynomial. It
is immediately apparent that only in special cases will the scalar
factors in

n−d
j=1 (1 − φjL) be able to cancel the autocorrelations in

each row of C(L)εt .
We illustrate with a two variable system that has a single lag.

This case preserves clarity, but extends readily to cases with more
lags or variables. We write the model in error correction form as

1x1t
1x2t


=


−α1
α2


(x1,t−1 − x2,t−1) +


ε1t
ε2t


, (6)

4 The expected R2 from a regression of yt on xt is another indicator of the strength
of cointegration. For φ = 0.8, the expected R2 values are (a) 0.92, (b) 0.98, (c)
0.39, (d) 0.69, (e) 0.18, (f) 0.40. To calculate the expected R2 , we averaged the R2

values obtained from 100,000 random samples. The expected R2 in cointegrating
regressions varies somewhat with φ. Figure A1 in the online appendix plots sample
time series.
5 We repeated these simulations using the Mα statistic of Ng and Perron (2001),

which can reduce size distortion in the presence of MA components. The results
were very similar to Fig. 1. We did not include the Phillips–Perron test which is
known to perform very poorly in these settings.
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