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• Stationary time series.
• Consistent in mean square.
• Sucient and necessary condition.
• Asymptotic average uncorrelatedness.
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a b s t r a c t

We discuss ergodicity for the mean in the sense that the sample average converges in mean square to the
population mean of a stationary stochastic process. This differs from ergodicity in a measure theoretic
sense. It is widely known that asymptotic uncorrelatedness is sufficient for ergodicity for the mean. We
weaken this assumption to ‘‘asymptotic average uncorrelatedness’’ and show that it cannot be further
weakened: Our condition is necessary and sufficient.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and summary

A time series of length T is considered as one realization of
a stochastic process. We assume that the process is stationary
with constant expectation µ at all time. This population mean
µ is estimated by the time average over T variables x1, . . . ,
xT :

x =
1
T

T∑
t=1

xt .

Under what circumstances will x converge to µ as T → ∞?
The answer depends on the mode of convergence. If convergence
is almost surely, then a sufficient condition is strict stationarity
and ergodicity in a measure theoretic sense (see Definition 1 and
Proposition 1 below). If convergence is in mean square we speak
of ergodicity for the mean. Almost sure convergence is neither
implied by nor does it imply convergence in mean square, such
that ergodicity in a measure theoretic sense and ergodicity for the
mean are somehow separate concepts. Many authors prefer the
rather simple and intuitive concept of ergodicity for the mean,
since the ergodicity in ameasure theoretic sense ismathematically
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much more involved, and strict stationarity is an assumption that
is hard to test empirically. Brockwell and Davis (1991, Thm. 7.1.1)
and Fuller (1996, Cor. 6.1.1.1) e.g. establish a sufficient condition
for ergodicity for the mean under covariance stationarity. In this
letter we provide a weaker condition and show that it is necessary,
too, see Proposition 2 below. We hence find that ergodicity for the
mean is equivalent to ‘‘asymptotic average uncorrelatedness’’ in
the sense of Proposition 2. Two examples illustratewhat ergodicity
for the mean is and what it is not.

The rest of this letter is organized as follows. The next section
becomes precise on the definitions and notation. Section 3 gives
our equivalent characterization of ergodicity for the mean and
discusses two illustrative examples. The proof of our result is
presented in the final section.

2. Preliminaries

Let the index setT be a subset of the integers,T ⊆ Z, and {xt}t∈T
denotes a univariate stochastic, real-valued process. The process is
called covariance stationary if the first and second moments are
constant over time (where we assume these moments to exist),
and if the covariance between xt and xt+h depends on the distance
h only:
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1. E (xt) = µ for t ∈ T ,
2. Cov (xt , xt+h) = E [(xt − µ) (xt+h − µ)] = γ (h) for all t, t +

h ∈ T .

The process is said to be strictly stationary if the distribution of
any n-vector

(
xt1 , . . . , xtn

)′ is invariant for any t1 < t2 < · · · < tn,
such that a shift from t1 < t2 < · · · < tn to t1 + h < t2 + h <
· · · < tn + h does not change the joint distribution. Examples
of covariance and strict stationarity are, respectively, white noise
processes and pure random processes defined as follows. Assume
a sequence {εt} free of serial correlation:

Cov(εt , εt+h) = 0 , h ̸= 0 with E(εt ) = 0. (1)

The process is called white noise in case of constant variance,
E(ε2

t ) = γ (0) = σ 2, often abbreviated as {εt} ∼ WN(0, σ 2). If a
white noise process is independent over time and has an identical
distribution (iid) at each point of time, then it is called a pure
random (or iid) process, in short {εt} ∼ iid(0, σ 2).

We are concerned with consistent estimation of the population
mean from a sample of size T in that x =

1
T

∑T
t=1xt converges to µ.

Such results have been called ‘‘law of large numbers’’ (LLN). Here,
we distinguish between almost sure convergence

a.s.
→ and conver-

gence in mean square
2

→ as T → ∞, see for instance Pötscher and
Prucha (2001) for a concise review of modes of convergence. The
latter convergence is defined by

E
(
(x − µ)2

)
→ 0 as T → ∞. (2)

Consistent estimation ofµ is related to the concept of ‘‘ergodicity’’,
which is mathematically involved and requires measure theoretic
foundations. We refrain from the precise definition given e.g. in
Stout (1974), Breiman (1992) or Davidson (1994); note that the
earlier exposition by Doob (1953) calls an ergodic process ‘‘met-
rically transitive’’.

Definition 1 (Ergodicity). A strictly stationary process is called
ergodic when satisfying metric transitivity as defined by Doob
(1953, p. 457); see also Stout (1974, Def. 3.5.8) or Breiman (1992,
Def. 6.30).

The relevance of ergodicity is rooted in the following well
known result.

Proposition 1 (Ergodicity). Let {xt} be a strictly stationary, ergodic
process with E(|xt |) < ∞. Then x

a.s.
→ µ as T → ∞.

Proof. Doob (1953, Thm. 2.1, p. 465), Stout (1974, Thm. 3.5.8) or
Breiman (1992, Prop. 6.31). ■

Doob (1953, Thm. 1.2, p. 460) or Breiman (1992, Cor. 6.33) show
that every iid process is ergodic. Obviously, if {εt} is iid, then so is
{ε2

t }. From this we conclude the following implication:

1
T

T∑
t=1

εt
a.s.
→ 0 and

1
T

T∑
t=1

ε2
t

a.s.
→ σ 2 if εt ∼ iid(0, σ 2). (3)

A drawback of Proposition 1 is the assumption of strict sta-
tionarity, which is hard to verify in practice. Further, it has been
mentioned that the concept behind Definition 1 is mathematically
somewhat involved. For these reasons many economists refer to
mean square convergence when speaking of ergodicity, which im-
plies so-called convergence in probability. According to Hamilton
(1994, p. 47) or Fuller (1996, p. 308) such a property is called
‘‘ergodic for the mean’’.

Definition 2 (Ergodic for The Mean). A covariance stationary pro-
cess is called ergodic for the mean when the sample average
converges to µ = E(xt ) in mean square, see (2).

In the next section we establish a necessary and sufficient
condition for ergodic for the mean.

3. Result and discussion

Hamilton (1994, Prop. 7.5) establishes ergodicity for the mean
under the assumption of an absolutely summable autocovariance
sequence. This is much more restrictive than necessary. Brock-
well and Davis (1991) and Fuller (1996) work under the weaker
sufficient condition that the sequence of autocovariances {γ (h)}
converges to zero as h → ∞:

γ (h) → 0 as h → ∞. (4)

Brockwell and Davis (1991, Thm. 7.1.1) and Fuller (1996, Cor.
6.1.1.1) prove that (4) implies (2). An evenweaker sufficient condi-
tion is given in Proposition 2. It only assumes that the average over
the autocovariances converges to zero. This assumption cannot be
weakened, since we show that it is also necessary.

Proposition 2 (Ergodic for the Mean). Let {xt} be a covariance
stationary process with finite µ and {γ (h)}. The sample average
converges in mean square to µ if and only if

1
H

H∑
h=1

γ (h) → 0 (5)

as H → ∞.

Proof. See next section.

Hence, a necessary and sufficient condition for ergodicity for the
mean is asymptotic average uncorrelatedness in the sense of (5). A
sequence {γ (h)} meeting (5) is also called Cesàro summable with
Cesàro sum equal to zero.

We discuss three examples to illustrate what ergodicity for the
mean is, and what it is not. First, we show that ergodicity for the
mean does not imply ergodicity in the sense of Definition 1.

Example 1. Let B be a Bernoulli variable with equal probability,
i.e. P(B = 1) = P(B = 0) = 1/2. Further, assume that {εt} is iid
with mean zero and variance 1, and independent of B. Next, define
{xt} = {εtB}, which is a strictly stationary process. The claim is
that {xt} is ergodic for the mean but not ergodic in the sense of
Definition 1. To see this we first obtain the second moments:

E(xt ) = 0 , E(x2t ) = E(B2) =
1
2

and E(xtxs) = 0 for t ̸= s.

Note that Proposition 2 and (3) imply that, respectively,

1
T

T∑
t=1

εt
2

→ 0 and
1
T

T∑
t=1

ε2
t

a.s.
→ 1.

Consequently, one has

1
T

T∑
t=1

xt = B
1
T

T∑
t=1

εt
2

→ 0 ,

1
T

T∑
t=1

x2t = B2 1
T

T∑
t=1

ε2
t

a.s.
→ B2

̸=
1
2
.

While 1
T

∑T
t=1xt is consistent in mean square for E(xt ) (ergodic for

the mean), the process is not ergodic. This follows from the fact
that 1

T

∑T
t=1x

2
t would converges almost surely to E(x2t ) if {xt} was

ergodic. The reason for that is: if {xt} was ergodic, then we know
from Doob (1953, p. 458) and Breiman (1992, Prop. 6.31) that {x2t }
would be strictly stationary and ergodic too. Hence, if {xt} was
ergodic, then Proposition 1 would imply 1

T

∑T
t=1x

2
t

a.s.
→

1
2 . This

proves the claim.
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