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a b s t r a c t

In a recent paper Kumbhakar and Lai (2016) proposed an output-oriented non-radialmeasure of technical
inefficiency derived from the revenue function. They proposed a closed skew-normal distribution for
maximum likelihood estimation but they did not apply the model to data and their technique depends
on multiple evaluations of multivariate normal integrals for each observation which can be very costly.
In this paper we extend their approach to the profit function and we propose both input- and output-
oriented non-radial measures of technical inefficiencies. Although the extension to the translog profit
function is trivial many observations, in practice, may contain negative profits. For this reasonwe provide
a nontrivial extension to the Symmetric Generalized McFadden (SGM) profit function. We propose and
apply (to a large sample of US banks) Bayesian analysis of the SGM model (augmented with latent
technical inefficiencies resulting in a highly nonlinear mixed effects model) using the integrated nested
Laplace approximation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we build on Kumbhakar and Lai (2016) who devel-
oped an output-specific (vector) efficiency measure starting from
the revenue function and using the envelope theorem to obtain the
output shares. They have used the translog revenue function and,
under the assumption that latent output-specific inefficiencies
follow a multivariate half-normal distribution they obtained the
likelihood function of the system of output shares (without the
translog revenue function) using a closed skew-normal distribu-
tion. Kumbhakar and Lai (2016) did not take the model to the data.
A difficulty that arises in their likelihood is that it requiresmultiple
evaluations of multivariate normal integrals for each observation
which can be very costly.

In this study we extend Kumbhakar and Lai (2016) to the profit
function case in order to derive both output-specific and input-
specific inefficiency measures. As the authors mention: ‘‘Although
in the present model we consider only output slacks, the formula-
tion can be extended to accommodate both input and output slacks
in a profit maximizing model’’. This is true but certain nontrivial
problems arise. In order to get rid of the awkward normalizing
constants of the closed skew-normal distribution we propose a
multivariate lognormal distribution for the latent input and output
inefficiencies. Second, the extension of revenue to profit functions
requires that all observations have positive profits which is rarely

E-mail address:m.tsionas@lancaster.ac.uk.

the case. Therefore, we adopt a Symmetric Generalized McFadden
(SGM) profit function. We propose and apply (to a large sample
of US banks) Bayesian analysis of the SGMmodel (augmented with
latent technical inefficiencies resulting in a highly nonlinearmixed
effects model) using the integrated nested Laplace approximation.
To our knowledge this is the first study that analyzes the SGM
profit function enforcing all regularity restrictions globallywithout
calibrating certain parameters.

2. Model

We build on Kumbhakar and Lai (2016) to construct a profit
system with both output- and input-oriented inefficiency. The
vector of netputs is z ∈ ℜ

N , assuming outputs are positive and
inputs are negative. For simplicity z1, . . . , zM > 0 are outputs and
zM+1, . . . , zN < 0 are inputs. Prices are p ∈ ℜ

N
+
. The objective of

the firm is profit maximization:

max
z∈ℜN

: p⊤z, s.t. F (z∗) = 1, (1)

where z∗
= θ ⊙z, θ ∈ ℜ

N with θ1, . . . , θM ≥ 1 and θM+1, . . . , θN ≤

1. The problem is equivalent to:

Π (p∗) = max
z∈ℜN

: p⊤

∗
z, s.t. F (z) = 1, (2)

where p∗ = [pn/θn, n = 1, . . . ,N] in view of equations (2) in
Kumbhakar and Lai (2016). Using the envelope theorem we have
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the netput demands in the form: z =
∂Π (p∗)

∂p∗
. Alternatively we have

the shares: ∂ logΠ (p∗)
∂ log p∗

n
=

p∗
nzn

Π (p∗)
, n = 1, . . . ,N . Next we assume a

translog profit function:

logΠ (p∗) = β0 +

N∑
n=1

βn log p∗

n +
1
2

N∑
n=1

N∑
m=1

βnm log p∗

n log p
∗

m. (3)

From the envelope theorem we obtain:

∂ logΠ (p∗)
∂ log p∗

n
= βn +

n∑
m=1

βnm (log pm − log θm) , n = 1, . . . ,N. (4)

Defining ξn = − log θn, n = 1, . . .,N we have the following
system of equations:

logΠ (p∗) = β0 +

N∑
n=1

βn log pn +
1
2

N∑
n=1

N∑
m=1

βnm log pn log pm

+ A(p, ξ ) + v0,

Sn =
pnzn
Π

= βn +

n∑
m=1

βnm log pm +

N∑
m=1

βnmξm + vn,

n = 1, . . . ,N − 1,

(5)

where

A(p, ξ ) =

N∑
n=1

βnξn +

N∑
n=1

N∑
m=1

βnm log pmξn

+
1
2

N∑
n=1

N∑
m=1

βnmξnξm, (6)

and v = [v0, v1, . . . , vN−1] are error terms satisfying v ∼

NN (O, Σ). For the ξns we have a multivariate half-normal distri-
bution independently of v and prices:

[ξ1, . . . , ξM , −ξM+1, . . . ,−ξN ] ∼ N+

N (O, Ω). (7)

As
∑N

n=1Sn = 1 we can omit the last share equation. To impose
homogeneity of degree one in prices we can employ the usual
parametric restrictions or redefine pn := pn/p1 in which case the
system in (5) takes the form:

logΠ (p∗) = β0 +

N∑
n=2

βn log pn +
1
2

N∑
n=2

N∑
m=2

βnm log pn log pm

+ A(p, ξ ) + v0,

Sn =
pnzn
Π

= βn +

n∑
m=2

βnm log pm +

N∑
m=1

βnmξm + vn,

n = 1, . . . ,N − 1,

(8)

where

A(p, ξ ) =

N∑
n=1

βnξn +

N∑
n=1

N∑
m=2

βnm log pmξn

+
1
2

N∑
n=1

N∑
m=1

βnmξnξm. (9)

Additionally, ξ1, . . . , ξM ≤ 0 and ξM+1, . . . , ξN ≥ 0. Kumbhakar
and Lai (2016) essentially consider only the system of the last N
equations in (5) ignoring their revenue function because it is not
linear in ξ . Ignoring, however, this information may be critical
as the revenue or profit function provides significant identifying
information.1 Then they formulate the likelihood function from

1 In principle identification of the one-sided component is not a problem, unless
the distribution of the overall error term turns out to be nearly symmetric. In

the system of share equations using properties of the closed skew-
normal distribution. This involves evaluating multivariate normal
integrals in ℜ

N−1 for each observation which can be cumbersome
and computationally non-trivial. The entire system in (5) can be
estimated usingMarkov ChainMonte Carlo and especially efficient
techniques developed in Kumbhakar and Tsionas (2005).

3. The Symmetric Generalized McFadden form and posterior
analysis

If all profits are strictly positivewe can proceedwith the system
in (5). In empirical applications,more often than not someobserva-
tions have negative profitwe have to proceedwith a different func-
tional form.2 The Symmetric Generalized McFadden form (SGM)
has been introduced by Diewert and Wales (1987) in the context
of cost functions. As a profit function, the SGM takes the following
form:

Π (po) =

N∑
n=1

βnpon +
1
2

∑N
n=1

∑N
m=1 βnmponp

o
m∑N

n=1 αnpon
, (10)

where pon = pn + θn, ∀n = 1, . . . ,N where θ1, . . . , θM ≥ 0 and
θM+1, . . . , θN ≤ 0. The SGM profit function is linear homogeneous
in prices. Convexity can be imposed by restricting the [βnm]matrix
to positive semidefinite (e.g. by using the Cholesky decomposition)
and holds globally. From the envelope theoremwe have the netput
demands and, after introducing error terms we have the following
system:

Π (po) =

N∑
n=1

βnpon +
1
2

∑N
n=1

∑N
m=1 βnmponp

o
m∑N

n=1 αnpon
, +v0,

zn = βn +

∑N
m=1 βnmpom

S
−

1
2

αn
∑N

n=1
∑N

m=1 βnmponp
o
m

S2
+ vn, n = 1, . . . ,N,

(11)

where S =
∑N

m=1αmpom > 0, αn ≥ 0, ∀n = 1, . . . ,N and∑N
m=1βnmpom = 0, ∀n = 1, . . . ,N .
Again, we assume v = [v0, v1, . . . , vN ] are error terms satisfy-

ing v ∼ NN+1(O, Σ) and

log [θ1, . . ., θM , −θM+1, . . ., −θN ] ∼ NN (µ, Ω), (12)

where3 µ ∈ ℜ
N+1. In ‘‘expanded’’ form the system is the following:

Π =

N∑
n=1

βn (pn + θn)

+
1
2

∑N
n=1

∑N
m=1 βnm (pn + θn) (pm + θm)∑N

n=1 αn (pn + θn)
, +v0,

zn =
∂Π

∂pon
= βn +

∑N
m=1 βnm (pm + θm)∑N
m=1 αm (pm + θm)

−
1
2

αn
∑N

n=1
∑N

m=1 βnm (pn + θn) (pm + θm){∑N
m=1 αm (pm + θm)

}2 + vn,

n = 1, . . . ,N.

(13)

applications this may often be the case. Therefore, the inclusion of the profit (or
revenue) function may become essential as it provided information, in nonlinear
form, about the one-sided components.
2 Some authors add a constant to profits so that all of them become positive. We

do not follow this arbitrary practice here.
3 The assumption of multivariate log-normality besides being quite flexible it

avoids the presence of awkward integrating constants like the multivariate normal
c.d.f which would, otherwise, pose certain obstacles to both maximum likelihood
as well as posterior analysis using Monte Carlo techniques.
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