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h i g h l i g h t s

• Propose a new heteroscedasticity-robust model screening (HRMS) method.
• Show that HRMS has good performance in simulation.
• Demonstrate that HRMS is computationally efficient.
• Show that HRMS can lead to large gains in box office prediction accuracy.

a r t i c l e i n f o

Article history:
Received 11 August 2016
Received in revised form 17 October 2016
Accepted 10 December 2016
Available online 16 December 2016

JEL classification:
C52
C53
D03
M21

Keywords:
Model screening
Model averaging
Big data analytics

a b s t r a c t

Frequentist model averaging has been demonstrated as an efficient tool to deal with model uncertainty
in big data analysis. In contrast with a conventional data set, the number of regressors in a big data set is
usually quite large, which leads to a exponential number of potential candidate models. In this paper, we
propose a heteroscedasticity-robust model screening (HRMS) method that constructs a candidate model
set through an iterative procedure. Our simulation results and empirical exercise with big data analytics
demonstrate the superiority of our HRMS method over existing methods.

© 2016 Published by Elsevier B.V.

1. Introduction

The term big data is now commonly used in popular press in
part, due to excitement in industry about using social media data
to predict people’s reactions to new products including movies.
A big challenge researchers in this area face is determining what
explanatory variables to extract from approximately 350 million
tweets and 6 billion Facebook messages per day, and how to use
them in forecasting exercises. As demonstrated in Lehrer and Xie
(2016), frequentist model averaging is an efficient tool to deal with
this uncertainty in big data analytics.
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Amodel averaging estimator obtains aweighted average of esti-
mates from a set of candidatemodels through numerical optimiza-
tion routines. The performance of a model averaging estimator
crucially depends on the candidate model set, as demonstrated in
Hansen (2007). In practice, one possible approach is to construct
the candidate model set using a full permutation of all regres-
sors. One obvious drawback is that the total number of candidate
models increases exponentially with the number of regressors.
As shown in many works including Wan et al. (2010) and Xie
(2015), keeping the total number of candidate models small or
slowing its convergence to infinity is a necessary condition to
maintain the asymptotic optimality ofmodel averaging estimators.
While most existing theoretical works assumed a given candidate
model set, a recent paper by Zhang et al. (forthcoming) established
the asymptotic optimality of model averaging estimators with
screened candidate models.
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Inspired by the forward (FW)method of Claeskens et al. (2006),
we propose a new heteroscedasticity-robust model screening
(HRMS) technique that constructs a candidate model set through
an iterative procedurewhich adds one regressor at a time and ends
with a sequence of nested candidate models. As demonstrated in
practice, for example, Liang et al. (2011), Lehrer and Xie (2016),
and the results in our Appendix B, it is quite common that a
handful of models can assume more than 95% of the total weights
and a considerable proportion of the candidate models have near-
zero weights. These models can be discarded without harming the
result.

This paper continues with a detailed introduction of our HRMS
method in Section 2. Section 3 studies the finite sample perfor-
mance of our HRMS method by comparing it with existing model
screeningmethods usingMonte Carlo simulations. In Section 4, we
examine to what extent can data on aggregate product sentiment
obtained from messages in Twitterverse can improve business
decisions via demand forecasting.

2. Heteroscedasticity-robust model screening

Our setup is similar to that of Wan et al. (2010). We observe a
random sample of (yi, xi) for i = 1, . . . , n, inwhich yi is a scalar and
xi = (xi1, xi2, . . .) is countably infinite. We consider the following
data generating process (DGP):

yi = µi + ei, µi =

∞∑
j=1

βjxij, E(ei|xi) = 0 (1)

for i = 1, . . . , n and where µi can be considered as the conditional
mean µi = µ(xi) = E(yi|xi). We allow the error term to be
heteroscedastic by setting the error term variance as σ 2

i = E(e2i |xi).
In the model averaging literature, we usually assume that there

exists a total of M candidate models approximating the DGP in
Eq. (1):

yi =

km∑
j=1

βm
j xmij + bmi + ei,

for m = 1, . . . ,M , where xmij for j = 1, . . . , km denotes the
regressors, βm

j denotes the coefficients, and bmi ≡ µi −
∑km

j=1β
m
j xmij

is the modeling bias. The M candidate models form a model set
MK that consists of K regressors. Each candidate model contains
km ≤ K regressors.

In theory, the model set MK is assumed to be predetermined.
However, in practicewe need to constructMK from different com-
binations of the regressors. One popular approach is to consider a
full permutation of all K regressors that generates Mfull = 2K

− 1
candidate models. However, this approach is not appropriate for
large K .

In this section, we propose anHRMSmethod that can efficiently
restrict the number of candidate models. Our HRMS method is an
iterative procedure that adds one variable at a time and ends with
a sequence of nested candidate models. We summarize our HRMS
method in the following.

(i) We pick an initial model, denoted by M(0), which can be a
null model that includes no variables, or a model consisting
of certain regressors (variables) of interest.

(ii) We add each of the S(0) remaining regressors one at
a time to M(0). This generates S(0) candidate models.
Then, we examine each candidate model by the following
heteroscedasticity-robust criterion:

HRMS(s) =
y − P sy

2
+ 2

n∑
i=1

(
ei
)2psii

for s = 1, . . . , S(0), (2)

where P s stands for the projection matrix of the regressors,
ei is the ith element of the error term that needs to be
approximated by a least squares residual, and psii represents
the ith diagonal term in P s.

(iii) We select themodel that yields the lowest value for criterion
(2), denoted by M(1), and treat it as the initial model of the
next round.

(iv) We repeat steps (ii)–(iii) iteratively until we reach the pool
model that consists of all K variables. We construct our
candidate model setMK including all selected models,M(0)
(if not null), and the pool model.

The HRMS method adds one and only one variable to the pre-
vious step’s model each time. Therefore, if there are K variables in
total and our initial modelM(0) includes K0 variables, then we end
up with only (K − K0 + 1) nested models, which is much smaller
than Mfull, especially for large K .

Our HRMS method can be easily extended to models with
homoscedastic error terms by replacing the heteroscedasticity-
robust criterion in Eq. (2) with the following HEMS criterion:

HEMS(s) =
y − P sy

2
+ 2σ 2ks for s = 1, . . . , S(0),

where σ 2 represents the variance of the error term and ks is
the number of regressors. Since most big data sets exhibit strong
heteroscedasticity, we concentrate on HRMS in this paper.

Our HRMSmethod is inspired by the FWmethod of Claeskens et
al. (2006). Zhang et al. (2012) extended the original FWmethod to
FW-AIC by using the AIC of Akaike (1973) as the selection criterion.
As demonstrated in Lehrer and Xie (2016), a simplified version of
the automatic GETS approach by Campos et al. (2003) can be used
for the model screening process. The ARMS method of Yuan and
Yang (2005) also explores the full model set and selects the topM ′

models according to AIC scores. See Appendix C formore details on
the model screening methods.

3. Simulation

In this section, we conduct Monte Carlo simulations to inves-
tigate the performance of our HRMS method and compare it with
those of the GETS, ARMS, and FW-AIC methods. Similar to Liu and
Okui (2013) and Zhao et al. (2016), we consider the DGP

yt = µt + et =

∞∑
j=1

βjxjt + et

for t = 1, . . . , n. The coefficients are generated by βj = cj−1,
where c is a parameter we control such that R2

= c2/(1 + c2)
varies in {0.1, . . . , 0.9}. We set x1t = 1 and other xjt follows
N(0, 1) independently. Since the infinite series of xjt is infeasible in
practice, we truncate the process at jmax = 10,000. The error term
et follows N(0, x22t ). We consider 4 different sample sizes where
n = 100, 200, 300, and 400. We assume that we can only observe
the first 20 regressors. A full permutation of the K = 20 regressors
leads to 1,048,575 candidate models (the null model is ignored).

We construct four candidate model sets: MK
GETS, MK

ARMS,
MK

FW-AIC, and MK
HRMS, using the four model screening methods

implied in the subscripts. The pre-determined parameters for the
GETS and the ARMS methods are p = 0.1 and M ′

= 20, respec-
tively, and the initial model M(0) is set as null for both the FW-AIC
and the HRMSmethods. Then, we evaluate the performance of the
four methods by comparing their risks, such that

Riski ≡
1
n

n∑
t=1

(
µ̂t (MK

i ) − µt
)2

for i = GETS, ARMS, FW-AIC, and HRMS,
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