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h i g h l i g h t s

• We propose the use of Dynamic Conditional Score (DCS) count panel data models.
• We compare the static, finite distributed lag, exponential feedback and DCS models.
• We use panel data for United States firms for period 1979–2000.
• We use the Poisson quasi-maximum likelihood estimator with fixed effects.
• The empirical results suggest that DCS-QAR is the best specification.

a r t i c l e i n f o

Article history:
Received 23 July 2016
Received in revised form
4 September 2016
Accepted 20 October 2016
Available online 29 October 2016

JEL classification:
C33
C35
C51
C52
O3

Keywords:
Research and development
Patent count panel data
Dynamic conditional score
Quasi-maximum likelihood

a b s t r a c t

In this paper, we propose the use of Dynamic Conditional Score (DCS) count panel data models. We
compare the statistical performance of the static model with different dynamic models: finite distributed
lag, exponential feedback and different DCS models. For DCS, we consider random walk or quasi-
autoregressive dynamics. We use panel data for a large cross section of United States firms for period
1979–2000, and the Poisson quasi-maximum likelihood estimatorwith fixed effects. The empirical results
suggest that DCS has the best statistical performance.

© 2016 Elsevier B.V. All rights reserved.

1. Econometric model

Gourieroux et al. (1984a,b) and Wooldridge (1997a, 2002)
motivate the use of the Quasi-Maximum Likelihood Estimator
(QMLE) for count panel data models. For QMLE, a pseudo Log-
Likelihood (LL) objective function is maximized, for which the
pseudo probability distribution is within the Linear Exponential
Family (LEF). An example of LEF is the Poisson distribution. In this
paper, we use Poisson QMLE for patent count panel data models,
hence nit |Ft ∼ Poisson(λit) is the pseudo distribution for the
count variable nit . For this distribution, (i) E(nit |Ft) = λit , (ii) the
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log of the conditional probability mass function is ln f (nit |Ft) =

−λit + nit ln λit − ln(nit !), (iii) the conditional score of nit with
respect to λit is ∂ ln f (nit |Ft)/∂λit = nit/λit − 1 = sit , and (iv)
(si1, . . . , siT ) is a martingale difference sequence with respect to
Ft , under the correct specification of the conditional mean of nit .

We suggest count panel data models for which the error term
eit is possibly serially correlated. We introduce serial correlation
into eit by the dynamic variable Ψit that is updated by the
pseudo conditional score sit−1. We name these models as Dynamic
Conditional Score (DCS) (Harvey, 2013) count panel data models.
In the body of literature, Davis et al. (2003, 2005) and Harvey
(2013) suggest dynamic time-series models for Poisson dependent
variables updated by sit−1. We extend those works, since we use (i)
panel datamodelswith unobserved effects, (ii) more parsimonious
autoregressive dynamics for the impact of conditional score, and
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Table 1
Parameter estimates.

SM FDL EFM

c −1.3469***(0.1669) −1.2204***(0.1424) −1.1096***(0.0702)
ζ1 0.0932***(0.0164) 0.0801***(0.0128) 0.0588***(0.0061)
ζ2 −0.0155***(0.0031) −0.0125***(0.0029) −0.0132***(0.0012)
ζ3 −0.0061(0.0082) −0.0103 (0.0106) −0.0177***(0.0021)
κ0 0.9094***(0.1363) 0.5689***(0.1102) 0.4562***(0.0311)
κ1 NA 0.1349**(0.0652) NA
κ2 NA 0.1330***(0.0471) NA
κ3 NA 0.1073(0.0750) NA
κ4 NA 0.0064(0.0183) NA
κ5 NA 0.0062(0.0395) NA
ν0 0.0112***(0.0039) 0.0127***(0.0029) 0.0024***(0.0007)
ν1 NA 0.0069***(0.0018) NA
ν2 NA −0.0044(0.0046) NA
ν3 NA −0.0103***(0.0036) NA
ν4 NA −0.0184***(0.0058) NA
ν5 NA 0.0358***(0.0102) NA
ξ0 0.0073(0.0061) 0.0077(0.0081) 0.0029**(0.0013)
ξ1 NA −0.0012(0.0054) NA
ξ2 NA 0.0008(0.0126) NA
ξ3 NA 0.0295**(0.0118) NA
ξ4 NA 0.0084(0.0069) NA
ξ5 NA −0.0741***(0.0279) NA
δ1 0.5505***(0.0634) 0.5381***(0.0640) 0.0719***(0.0256)
δ2 −0.2465*(0.1386) −0.2831**(0.1156) −0.0481(0.0381)
δ3 −0.6274(0.4508) −0.6247*(0.3409) −0.0905 (0.0754)
δ4 −0.5605(0.3751) −0.3794(0.3652) −0.1855***(0.0544)
α1 NA NA 0.8621***(0.0279)

Notes: Not Available (NA). Robust standard errors are in parentheses.
* Significance at the 10% level.
** Significance at the 5% level.
*** Significance at the 1% level.

(iii) robust Poisson QMLE for statistical inference. The DCS count
panel data model is

nit = exp(X ′

itβ)vieit = exp(X ′

itβ)vih(Ψit)ϵit (1)

for i = 1, . . . ,N firms and t = 1, . . . , T years, where Xit is a
vector of explanatory variables, vi represents unobserved effects,
eit is a possibly serially correlated error term,Ψit is possibly serially
correlated with E(Ψit) = 0, and ϵit is i.i.d. with E(ϵit) = 1. We use
the filter

Ψit = α1Ψit−1 + γ1sit−1 (2)

that for α1 = 1 we name as the Random Walk (RW) specification,
and for |α1| < 1 we name as the Quasi-Autoregressive (QAR)
specification (Harvey, 2013). We initialize Ψit by the parameter
Ψ0 = Ψi0 for i = 1, . . . ,N . For h we consider alternative
specifications, for which h(Ψit) > 0 and h[E(Ψit)] = 1, such as:

h(Ψit) = exp(Ψit) (3)
h(Ψit) = tanh(Ψit) + 1 (4)

where tanh is the hyperbolic tangent function. We also use
h(Ψit) = [1 − exp(−Ψit)]/[1 + exp(−Ψit)] + 1 and h(Ψit) =

2F(Ψit) (F is the distribution function of any symmetric continuous
randomvariable centered at zero), but results are identical to those
of Eq. (4).

2. Statistical inference

We estimate the parameters of DCS count panel data models
by using QMLE with fixed effects Wooldridge (1997a, 2002). We
maintain the following assumptions:

(A1) (pre-sample data) Pre-sample data (nit , Xit : t = 1, . . . , P)
are available. Let FP denote the information set generated by
pre-sample data.

(A2) (fixed effects) Replace vi by pi(FP) > 0, where pi(FP)
includes averages of nit and Xit that are computed for the pre-
sample data period (Blundell et al., 2002).

(A3) (correct specification of the mean) E(nit |Xit , Ψit , FP) =

exp(X ′

itβ)pi(FP)h(Ψit).
(A4) (martingale difference sequence) (sit : t = 1, . . . , T )

is a martingale difference sequence with respect to Ft =

(Xit , Ψit , FP).
(A5) (exogeneity) All variables in Xit are predetermined (Blundell

et al., 2002) (alternatively, all variables in Xit satisfy the
sequential moment restrictions; Chamberlain, 1992 and
Wooldridge, 1997a,b, 2002).

The use of pre-sample averages for fixed effects ismotivated by the
work of Blundell et al. (2002).WeuseQMLEwith fixed effects, since
QMLE with random effects is not feasible for DCS count panel data
models, due to the latent vi that appears within the conditional
score. We estimate the parameters consistently by using the
pooled Poisson QMLE method with λit = exp(X ′

itβ)pi(FP)h(Ψit),
by solving the maximization problem:

argmax
Θ

LL(Θ) = argmax
Θ

N
i=1

T
t=1

−λit + nit ln λit − ln(nit !). (5)

For the pooled Poisson QMLE, the pseudo score is sit =

nit/[exp(X ′

itβ)pi(FP)h(Ψit)] − 1, and we use the asymptotic
distribution of parameter estimates of Wooldridge (1997a, 2002).

3. Data

The United States (US) utility patent dataset (source: Mi-
croPatent LLC) includes the US Patent and Trademark Office
(USPTO) patent number, application date, publication date, USPTO
patent number of cited patents, three-digit US technological class,
and company name. We perform all data procedures according
to the work of Hall et al. (2001). We use the number of success-
ful patent applications nit for each firm and year. We measure
spillovers of knowledge among firms by the log of the number of
citations made of past patents of other firms of the same indus-
try IAit and of other industries IEit . We use inflation-corrected log
R&D expenses rit to measure R&D investment (source: Standard
& Poor’s Compustat data files). We had created a match file and
crossed the patent and firm datasets. The dataset includes 488,149
patents with application dates for period 1979–2000 (22 years) of
4476 US firms (N = 4476). We divide the full data window into
two subperiods. First, the pre-sample data window is from 1979 to
1983 (P = 5 years). Second, the in-sample data window is from
1984 to 2000 (T = 17 years). It is noteworthy that Blazsek and
Escribano (2010, 2016) use the same dataset.

4. Empirical results

We estimate five alternative multiplicative patent count panel
data models. The first model is the Static Model (SM) for patent
counts. For this model, h(Ψit) = 1 and X ′

itβ is

X ′

itβ = c + ζ1t + ζ2(t × rit) + ζ3r2it + κ0rit + ν0rit IAit

+ ξ0rit IEit (6)

where the explanatory variables are motivated by Blazsek and
Escribano (2010, 2016). The second model is the Finite Distributed
Lag (FDL) model (Hausman et al., 1984), using

X ′

itβ = c + ζ1t + ζ2(t × rit) + ζ3r2it +

5
k=0

κkrit−k

+ rit
5

k=0

νkIAit−k + rit
5

k=0

ξkIEit−k (7)
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