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h i g h l i g h t s

• A model of network formation with the possibility of node failure has been analysed.
• Players receive benefits from connecting directly and indirectly through costly links.
• Conditions are identified for Nash and efficient networks.
• The conditions involve notion of k-Node Super Connectivity.

a r t i c l e i n f o

Article history:
Received 28 August 2016
Received in revised form
13 October 2016
Accepted 21 October 2016
Available online 26 October 2016

JEL classification:
C7
D8
R4

Keywords:
Connectivity
Node failure
Nash networks
Efficient networks

a b s t r a c t

We examine a non-cooperative model of network formation where players may stop functioning. We
identify conditions under which Nash and efficient networks will remain connected after the loss of k
nodes by introducing the notion of k-Node Super Connectivity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we focus on a model of network formation where
players (also called nodes) in the network can fail with a certain
exogenous probability. Examples of networks being affected by
node failure abound in the real world. Consider for instance, the
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social and economic networks in a region hit by a natural calamity
like a hurricane, or a business network where some firms exit the
industry. This can also occur in a network of servers or a sensor
network either due to mechanical failure or a malicious attack.
Connectivity in the network is important in all these examples,
suggesting that strategic agents will have an incentive to create
multiple paths between themselves.

The literature on strategic reliability in economics has mostly
focused on the possibility of links failures. Themodel incorporating
reliability in networks was introduced in a paper by Bala and
Goyal (2000) where all links are allowed to fail with a given
exogenous probability. The authors then proceed to provide a
partial characterization of Nash and efficient networks in this
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Fig. 1. Node failure vs. link failure: An illustration.

context. Subsequently, Haller and Sarangi (2005) and Billand et al.
(2011) allow for heterogeneity in the link failure probabilities
and values that can be obtained from other players respectively.
While full characterization of the equilibrium networks is again
shown to be elusive, both papers provide an ‘‘anything goes’’ result
which shows that with only a bit of heterogeneity (two different
parameter values) any essential network can be supported as a
Nash equilibrium. In a slightly different framework, De Jaegher
and Hoyer (forthcoming) study a game between a network
designer and anetworkdisruptor and find the equilibriumnetwork
architectures for different levels of link costs. These types of game
have also been studied by Dziubiński and Goyal (2013), Goyal and
Vigier (2014) and Haller (2016). Note that in these models the
attacker typically removes links or nodes.

Ours is the first paper to study node failure when agents form
links in a decentralized way—a phenomenon quite different from
link failure. Under link failure, as well as under node failure,
agents can create alternate paths by forming costly linkswith other
agents. However, the logic for creating alternate paths is quite
different. Consider Fig. 1.

In Fig. 1, player 1 has formed a link with player 2 and player
2 has formed links with players 3 and 4. In this figure, under link
failure, the formation of an additional link by player 1 with player
3 can allow player 1 to access the resources of players 2, 3 and 4, in
situation where the link between 1 and 2 fails. By contrast, under
node failure, this additional link can never allow player 1 to get
access to the resources of players 2 and 4 when player 2 fails; it
can only allow access to the resources of player 3. Moreover, under
node failure, in Fig. 1, player 1’s payoff will not change if players
3 and 4 add a link between themselves. However, this link will
improve her expected payoff under link failure. Finally, under node
failure, player 1 also needs to take into account her own survival
probability while computing her payoffs before adding a costly
link. Thus, ensuring connectivity in the two different models may
require different strategies.

Our focus in this note is on connectivity in the network. To study
this we introduce the notion of k-Node Superconnectivity which
checks whether a network is still connected after the deletion
of any k nodes. Using this definition, we then identify sufficient
conditions for both Nash and efficient networks.

2. Preliminaries

Graph-theoretic concepts. A (simple directed) network g is a pair
of sets (N, E) where N is a set of nodes and E ⊂ N × N is a set of
links with (i, i) ∉ E for all i ∈ N . We denote by (i, j) ∈ E the link
from i to j. Let G be the set of all (simple directed) networks whose
set of vertices is N .

A chain in g between node j and node i ≠ j, is an alternating
sequence of distinct nodes i0, i1, . . . , im such that i0 = i, im = j,
and an alternating sequence of distinct links such that for k =

0, . . . ,m − 1, (ik, ik+1) ∈ E or (ik+1, ik) ∈ E. A network g is
connected if there is a chain in g between all nodes i, j ∈ N . A
subnetwork gN ′

= (N ′, E ′) induced by N ′
⊆ N consists of a set of

nodes N ′ and a set of links E ′
⊂ N ′

× N ′ such that (i, j) ∈ E ′ if and

only if (i, j) ∈ E for every pair (i, j) ∈ N ′
× N ′. Let S(g) be the set

of all subnetworks of g induced by all subsets N ′
⊆ N . Note that

for each subset N ′
⊆ N there is a unique subnetwork of g which

belongs to S(g). A component gN ′

of g is a connected (induced)
subnetwork of g such that for all N ′′

⊆ N with N ′′
⊃ N ′, gN ′′

is not
connected. Finally, a network g ∈ G is essential if (i, j) ∈ E implies
(j, i) ∉ E.

We nowpresent two definitions thatwill play an important role
in our analysis. A set of nodes N ′

⊆ N in a connected network
g is critical if gN\N ′

is not connected. A network is k-Node Super
Connected (k-NSC) if no set of k nodes or less is critical. To avoid
triviality, we set k < n − 2.
Players and strategies. The set of players is identified with the
set of nodes N = {1, . . . , n}, n ≥ 3. For each player i ∈ N , a
pure strategy is a vector gi = (gi,1, . . . , gi,i−1, 0, gi,i+1, . . . , gi,n) ∈

{0, 1}n. Here gi,j = 1 means that player i forms a link with player
j, whereas gi,j = 0 means that i does not form this link. Let
g−i = (g1, . . . , gi−1, gi+1, . . . , gn) be the profile of strategies of all
players except i. We focus only on pure strategies. The set of all
pure strategies of player i is denoted by Gi, with Gi = {0, 1}N\{i}.
The joint strategy space is denoted by G = G1 × · · · × Gn. Note
that there is a one-to-one correspondence between G and G the set
of simple directed networks with vertex set N . Hence with a slight
abuse of notation, we identify the strategy profile (g1, . . . , gn) ∈ G
with the network g = (N, E) where gi,j = 1 if and only if (i, j) ∈ E.
Payoff. Player i incurs a cost c > 0 for each link she forms. We
consider the two-way flow of informationmodel, where both the
agents involved in a link can access the resources (or information)
of the other agent regardless of which agent initiates the link.
Moreover, player i obtains resources from player j if there exists
a chain between i and j. We denote by Ni(g) = {j ∈ N :

j ≠ i, there exists a chain in g between i and j} the set of players
whom i can access or ‘‘observe’’ in network g .

In our context, players may stay put (i.e. node failure occurs) or
appear (i.e. node failure does not occur). It follows that the network
formed by the players can be different from the actual network
observed. Hence we introduce the notion of realization to capture
the effects of this assumption. Formally, a realization of g , gN ′

∈

S(g), is a subnetwork of g where all players in N ′ are functioning
and all players inN \N ′ are not functioning. Following the strategic
reliability literature, assume the probability of node failure to be
identical and independent, where the survival probability of every
node is given by p ∈ (0, 1). Given g , the probability of subnetwork
gN ′

being realized is:

λ(gN ′

) = p|N ′
|(1 − p)n−|N ′

|.

Note that for g, h ∈ G we have λ(gN ′

) = λ(hN ′

) for all N ′
∈ 2N .

This property is important for establishing Proposition 2.
We now define the function Bi(g) as the expected benefit of

player i in network g . Summing over all possible realizations of the
network we get:

Bi(g) = V

N ′∈2N

λ(gN ′

)|Ni(g ′)|, (1)

where V is the value of information that i gets from an agent
with whom he is connected to directly or indirectly. Wlog we set
V = 1. Using Eq. (1) we define i′s expected payoff, that takes into
account both costs and benefits as:

ui(g) = Bi(g) − c

j∈N

gi,j. (2)

Nash networks. With a slight abuse of notation, we identify the
pair (gi, g−i) with the network g . A strategy gi is a best response
of player i to g−i if

ui(gi, g−i) ≥ ui(g ′

i , g−i), for all g ′

i ∈ Gi.
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