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• The paper points out serious flaws in the Salience Theory model.
• The lottery certainty equivalent is undefined for some ranges of probabilities.
• Monotonicity is violated.
• The origin of the model peculiarity lies in switching between different evaluation expressions.
• The number of expressions and switching values grows rapidly with the number of states considered.
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a b s t r a c t

Salience Theory Bordalo et al. (2012a) is a context-dependent theory of choice under risk, where objective
probabilities are replaced by decision weights distorted in favor of salient payoffs. The detailed analysis
presented in this paper points out serious flaws in this model, the most serious of which is that the
lottery certainty equivalent is undefined for some ranges of probabilities. Moreover, the model violates
monotonicity. The origin of the peculiar features of the model lies in switching between different
evaluation expressions that depend on salience conditions or the number of prospect payoffs. The number
of evaluation expressions and switching values grows rapidly with the number of states considered.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Salience Theory of choice under risk (Bordalo, Gennaioli
and Shleifer—BGS, 2012a) assumes that objective probabilities
are replaced by decision weights distorted in favor of salient
payoffs. The authors claim that their model provides a novel and
unified account of many empirical phenomena, including risk-
seeking behavior, the Allais paradox, and preference reversals.
The theory has been applied to e.g. asset pricing, consumer
choice, and judicial decisions, and the results have been published
in major economic journals (BGS, 2012b, 2013a, 2013b, 2015).
This paper, however, points out a serious flaw in this model,
viz. the lottery certainty equivalent (ce) is undefined for some
ranges of probabilities (the certainty equivalent is the sure sum of
money that the decision maker regards as equal to the prospect;
determining ce was not analyzed by BGS). This peculiar feature of
themodel is demonstrated for two-outcome (Section 3) and three-
outcome (Section 4) lotteries. Without further assumptions, then,
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themodel cannot be used in applications that require the lottery ce.
Moreover, the model violates monotonicity. This is best illustrated
by the shape of the indifference curves in the Marschak–Machina
triangle (Section 4). All things considered, despite its appealing
psychological foundation, it is difficult to accept the model from
either a normative or experimental viewpoint (Section 5).

2. The model

This section presents a brief summary of Salience Theory. For a
more detailed exposition, please refer to BGS (2012a). According
to the theory, a choice problem is described by: (1) a set of
states of the world S, where each state s ∈ S occurs with an
objective and known probability1 ps, such that


s∈S ps = 1;

and (2) a choice set [L1, L2], where the L1 are risky prospects
that yield monetary payoffs xis in each state s. The decision maker

1 Contrary to the original BGS (2012a) paper, objective probabilities are denoted
as p, rather than π .
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departs from the Expected Utility model by overweighting the
lottery’s most salient states in S. The salience of state s for lottery
Li and Lj (i ≠ j) is defined2 as a continuous and bounded
function σ(xis, x

j
s), that satisfies ordering, diminishing sensitivity,

and reflection. ‘‘According to the ordering property, the salience of
a state for Li increases in the distance between its payoff xis and the
payoff xjs of the alternative lottery’’ (BGS, page 1250). In addition,
symmetry, i.e. σ


xis, x

j
s


= σ


xjs, xis


‘‘is a natural property in the

case of two lotteries’’. BGS consider the following example salience
function, where parameter θ > 0:

σ

xis, x

j
s


=

|xis − xjs|xis +

xjs + θ
. (1)

The salience ranking of state s is denoted ks : ks ∈ {1, . . . , |S|},
with the lower value indicating higher salience. In a choice
between two lotteries, the decision maker prefers L1 to L2 iff:
s∈S

δksps

v


x1s


− v


x2s


> 0 (2)

ps denotes the probability of state s occurring. Parameter δ
measures the extent to which salience distorts decision weights. δ
is raised to the power of ks: when δ = 1, decision weights coincide
with objective probabilities; when δ < 1, more salient states are
less discounted. Finally, v is a value (utility) function, which BSG
often assume to be linear.

3. Certainty equivalent of a binary lottery

Consider a binary lottery L1 = {x1, (1 − p) ; x2, p}, where 0 ≤

x1 < x2. In order to determine its certainty equivalent ce, the
lottery is compared with a degenerate lottery Lce = {ce, 1}. The
state space in the choice set [L1, Lce] is S = {(x1, ce) , (x2, ce)}.
Three possible salience conditions are considered:

(1) σ (x2, ce) > σ (x1, ce). In this case, the following expression
has to be used to evaluate the preference between the lotteries:

V21 = δp [v (x2) − v (ce)] + δ2 (1 − p) [v (x1) − v (ce)] .

(2) σ (x1, ce) > σ (x2, ce). The following expression has to be
used:

V12 = δ (1 − p) [v (x1) − v (ce)] + δ2p [v (x2) − v (ce)] .

(3) σ (x2, ce) = σ (x1, ce). Definition 2 (BGS, pp. 1251–1252) says
that ‘‘all states with the same salience obtain the same ranking
(and the ranking has no jumps)’’. According to this definition,
the following expression has to be used:

V2eq1 = δp [v (x2) − v (ce)] + δ (1 − p) [v (x1) − v (ce)].

The certainty equivalent utility is determined by solving V21 = 0,
V12 = 0, and V2eq1 = 0, as the two lotteries L1 and Lce should be
indifferent:

v (ce) = v (x1) + [v (x2) − v (x1)]

×


p

p + δ(1 − p)
if σ (x1, ce) < σ (x2, ce)

p if σ (x1, ce) = σ (x2, ce)
δp

δp + (1 − p)
if σ (x1, ce) > σ (x2, ce) .

(3)

2 The notation used by BGS is highly confusing because they use x−i
s to denote

payoffs of lottery Lj . This was therefore changed in this paper.

Fig. 3.1. The three shapes of the v (ce) function defined in (Eq. (3)).

Without loss of generality, v (x1) = 0 and v (x2) = 1 can
be assumed. In this case, the expression on the left of the brace
assumes a value of 1, and the certainty equivalent utility v (ce) is
expressed by the formulas on its right. Note that v (ce) belongs
then to the interval [0, 1]. The shapes of the three functions defined
in (Eq. (3)) are presented in Fig. 3.1. The curves are either concave,
linear, or convex over the entire range of probability p. Which of
these, however, applies in a given probability sub-range depends
on the salience conditions.

Several observations need to be made to determine the sub-
ranges. Clearly, ce belongs to the [x1, x2] interval. Assuming
ordering, increasing ce from x1 to x2, results in σ (x1, ce)
increasing from σ (x1, x1) to σ (x1, x2), and σ (x2, ce) decreasing
from σ (x2, x1) to σ (x2, x2). Thus, assuming symmetry, i.e.
σ (x1, x2) = σ (x2, x1), there always exists a ceg value such that
σ


x1, ceg


= σ


x2, ceg


holds. If follows, that σ (x1, ce) <

σ (x2, ce) for ce < ceg , and σ (x1, ce) > σ (x2, ce) for ce > ceg .
ceg is thus the ce value at which the model switches between
three different evaluation expressions. Once the switching ceg
value is known, the probability sub-ranges in which the respective
formulas in (Eq. (3)) apply, are determined: [0, pgl) for the first
formula; the point pg for the second formula; and (pgr , 1] for the

third formula, here: pgl =
δv(ceg)

[1−(1−δ)v(ceg)] , pg = v

ceg


, and pgr =

v(ceg)
[δ+(1−δ)v(ceg)] . The resulting certainty equivalent utility v (ce) as a
function of probability p is presented in Fig. 3.2.

Note that the certainty equivalent utility v (ce) (thus the
certainty equivalent ce itself) is undefined for p ∈


pgl, pg


and

p ∈ (pg , pgr ]. Any assumption regarding the v (ce) value in the
ranges under discussion violates the one-to-one correspondence
between p and v (ce), as all the possible v (ce) values in the range
[0,1] are already assigned to probabilities from other sub-ranges.
Moreover, any such assumption violates monotonicity, as better
lotteries (i.e. lotteries with a greater probability of winning x2)
can clearly have smaller certainty equivalents than inferior ones.
Therefore, the only sensible assumption that can make the model
operational is that v (ce) assumes a constant value of v


ceg


for

p ∈

pgl, pg


and p ∈ (pg , pgr ]. This also violates monotonicity, but

in a weaker sense.
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