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h i g h l i g h t s

• The U-statistic proposed by Juhl and Xiao (2013) can be used to test against structural changes under nonstationary volatility.
• The test allows for conditional heteroskedasticity and time-varying unconditional variance, and can detect any smooth or abrupt structural changes.
• We advocate using a bootstrap method to improve the size performance in finite samples.
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a b s t r a c t

This paper shows that the U-statistic for moment condition stability proposed by Juhl and Xiao (2013)
can be used to test against structural changes in regression coefficients under nonstationary volatility.We
investigate the power property under the alternative, and prove that the test is consistent against single
break, multiple breaks and smooth structural changes. Finally, we advocate using a bootstrap method to
improve its size performance in finite samples.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Detection of structural changes in economic relationships is a
long-standing problem in econometrics. Up to now, most existing
tests for parameter stability are constructed under the assumption
that the unconditional volatility stays constant, see Ploberger and
Krämer (1992), Andrews and Ploberger (1994), Bai and Perron
(1998), and Chen and Hong (2012). While this sort of setup is
simple and can make the testing procedures maintain much of
its parsimonious structure. However, the inference is possibly
misleading if the volatility is nonstationary. Theoretically speaking,
parameter instability resulting from change in distribution is
naturally accompanied by instability in volatility, which has been
documented by many empirical studies, see Mikosch and Stărică
(2004), and Justiniano and Primiceri (2008). Hence, it is highly
desirable to develop tests that are also valid in the presence of
nonstationary volatility. To our knowledge, there are four tests
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designed for nonstationary volatility. However, Pitarakis (2004),
Perron and Zhou (2008) and Xu (2015) only allow for one single
break in regression coefficients, and the critical values in Xu (2015)
are obtained only through Monte-Carlo simulations. Kristensen’s
(2012) nonparametric tests can detect smooth changes, but are not
able to consistently detect abrupt breaks. Furthermore, the error
term in the tests does not allow for conditional heteroskedasticity
such as GARCH effects.

In this paper, we show that the nonparametric test of moment
condition stability proposed by Juhl and Xiao (2013) can be used
to test against structural changes in regression coefficients under
nonstationary volatility. Moreover, the test can be applied to the
case where nonstationary unconditional volatility and conditional
heteroskedasticity coexist in error terms. We investigate the
power property of the test under the alternative, and prove
that the test is consistent against single break, multiple breaks
and smooth structural changes. In order to reduce under-sized
distortion and sensitivity of bandwidth choice, we advocate using
a wild bootstrap method to improve the size performance in finite
samples.
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2. Test and assumptions

We consider the following time-varying coefficient model

Yt = X ′

tαt + ut , t = 1, . . . , T (1)

where Yt is a dependent variable, Xt is a d×1 vector of explanatory
variables and αt is a d × 1 possibly time-varying parameter
vector. The regressor vector Xt can contain exogenous explanatory
variables and lagged dependent variables. Thus, both static and
dynamic regression models are covered. The error is decomposed
as

ut = σtεt . (2)

The process {εt}
T
t=1 is a martingale difference sequence that sat-

isfies E(εt |Ft−1) = 0 and E(ε2
t |Ft−1) = h (Ft−1), where Ft−1 =

{X ′
t , X

′

t−1, . . . , εt−1, εt−2, . . .} and h (Ft−1) is the conditional het-
eroskedasticity of εt , while the process


σ 2
t

T
t=1 is modeled as a

time-varying trend that functions as a proxy for all factors that af-
fect the unconditional volatility.

We are interested in testing the constancy of the regression
parameter in (1). The null hypothesis of interest is

H0 : αt = α for all t (3)

and the alternative hypothesis is

HA : H0 is false. (4)

Define mt = Xt

Yt − X ′

tα

, then we have E (mt |Ft−1) = 0 for

all t under the null hypothesis; otherwise we have E (mt |Ft−1) =

XtX ′
t (αt − α) ≠ 0 due to the instability of αt . Hence, testing the

stability of αt is equivalent to checking whether the conditional
moment E (mt |Ft−1) = 0 holds over time. Under the null
hypothesis, the estimator of {mt}

T
t=1 can be represented by

m̂t = Xt ût
T
t=1, where


ût

T
t=1 is the OLS residuals from the

regression of Yt on Xt over the full sample.
Applying Juhl and Xiao (2013)’s U-statistic for moment

condition stability, we consider the following test statistic,

λ̂T =
1

T 2h

T
t=1


s≠t

Ks,tm̂′

tm̂s (5)

where Ks,t = K
 s−t

Th


is the kernel function and h is a bandwidth

parameter. If the null hypothesis is true, the U-statistic λ̂T should
be close to zero, and asymptotically normally distributed. Under
the alternative, it will be distant away from zero. In order to obtain
a valid test, λ̂T needs to be standardized by Th1/2 and a variance
estimator, say, ϕ̂2, to achieve standard normal limit. Now, we
construct the following test statistic:

ÛT =
Th1/2λ̂T

ϕ̂
(6)

where

ϕ̂2
=

2
T 2h

T
t=1


s≠t

K 2
s,t


m̂′

tm̂s
2

. (7)

To derive the asymptotic normality of the above test, we
introduce the following regularity conditions.

Assumption 1. (i) {X ′
t , εt}

′ is a (d + 1) × 1β-mixing process with
mixing coefficients {β(j)}∞j=1 satisfying


∞

j=1 j
2β(j)δ/(1+δ) < C for

some 0 < δ < 1; (ii) M = E

XtX ′

t


and Ω = E


XtX ′

tε
2
t


; (iii)

E

X8
it


< C for i = 1, . . . , d, and E


ε8
t


< C .

Assumption 2. {εt} is a martingale difference sequence (m.d.s)
such that E(εt |Ft−1) = 0, and Var(εt) = 1, where Ft−1 =

{X ′
t , X

′

t−1, . . . , εt−1, εt−2, . . .}.

Assumption 3. σ 2
t = σ 2(t/T ) is a boundednon-negative function,

and has continuous second derivatives except for a finite number
of points on [0, 1].

Assumption 4. α̂ is a parameter estimator such that
√
T


α̂ − α∗


= Op(1), where α∗

= p limT→∞ α̂ and α∗
= α under H0.

Assumption 5. The kernel K(·) is a symmetric and bounded
probability density function with support on [−1, 1], satisfying
K(0) ≥ K(r) for all r,

 1
−1 K(r)dr = 1 and

 1
−1 K(r)2dr < ∞.

Assumption 6. As T → ∞, h → 0 and Th2
→ ∞.

The β-mixing condition in Assumption 1 puts some restrictions
on the temporal dependence in {X ′

t , ut}. E(εt |Ft−1) = 0 in
Assumption 2 implies that the linear regression model is correctly
specified under H0. Additionally, Var(εt) = 1 in Assumption 2
allows for the conditional variance of εt to be heteroskedastic.
Assumption 3 covers both smooth structural changes and abrupt
structural breaks with known or unknown breakpoints in σ 2

t .
Assumption 4 holds for any

√
T -consistent estimator for α

under H0. We allow but not restricted to the OLS estimator α̂.
Assumptions 5 and 6 are standard assumptions in the kernel
regression literature.

Theorem 1. Suppose that Assumptions 1–6 hold, then under the null
hypothesis of αt = α we have

ÛT
d

−→N(0, 1) (8)

where ϕ̂2 is a consistent estimator of ϕ2
= 2trace (ΩΩ) 1

−1 K
2(v)dv

 1
0 σ 4(r)dr as T → ∞.

Proof. See in the Supplementary Material (see Appendix A).

Remark. This theorem is obtained by directly using the result of
Theorem 3.1 in Juhl and Xiao (2013). Because ÛT converges to a
standardized normal distribution, one can implement the test for
H0 by comparing it with a N(0, 1) critical value. Additionally, the
estimation error in α̂ is negligible asymptotically andhas no impact
on ÛT because it converges at rate

√
T , which is faster than the rate

of ÛT approaching H0 under local alternatives (see Theorem 3).

To study the asymptotic power of the test under HA, we rewrite
αt = α

 t
T


and impose the following assumption:

Assumption 7. α
 t
T


is a bounded function, and has continuous

second derivatives except for a finite number of points on [0, 1].

In other words, we permit α
 t
T


to have many finite

discontinuities. Hence, one single break or multiple breaks can be
regarded as special cases of our model. As a result, the test can be
used to detect abrupt or smooth structural changes.

Theorem 2. Suppose that Assumptions 1–7 hold, then for any
sequence of nonstochastic constants


CT = o


T
√
h


we have

Pr(ÛT > CT ) → 1 (9)

under HA as T → ∞.
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